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ABSTRACT 

The development of appropriate modeling and adjustment 
procedures for the estimation of harmonic coefficients of the 
geopotential, f r o m  surface gravity data was studied, in order to 
provide an optimum way of utilizing the terrestrial gravity information 
in combination solutions currently developed a t  NASA/Goddard Space 
Flight Center, for use in the TOPEX/POSEIDON mission. 

The mathematical modeling was  based on the fundamental boundary 
condition of the linearized Molodensky boundary value problem. 
Atmospheric and ellipsoidal corrections were applied to the surface 
anomalies. The l’xl’ mean free-air anomalies of the Ohio State 
University’s June 1986 global anomaly field w e r e  used. Low degree 
(60) potential coefficient sets were  estimated through a rigorous least 
squares adjustment. The high frequency content of the anomalies w a s  
removed prior to the adjustment using the OSU86F high degree 
expansion. 

Terrestrial gravity solutions were  found to be in good agreement 
wi th  the satellite ones over areas which are  well surveyed 
(gravimetrically) , such as  North America or Australia. However, 
systematic differences between the terrestrial only models and GEMT 1, 
over extended regions in Africa, the Soviet Union and China, were 
found. In Africa, gravity anomaly differences on the order of 20 mgals 
and undulation differences on the order of 15 meters ,  over regions 
extending 2000 km in diameter, occur. Comparison of the GEMTl 
implied undulations with 32 well distributed Doppler derived 
undulations gave an RMS difference of 2.6 m, while corresponding 
comparison with undulations implied by the terrestrial solution gave 
RMS difference on the order of 15 m, which implies that the terrestrial 
data in that region are substantially in error. 
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CHAPTER I 

INTRODUCTION 

Accurate knowledge of the external gravity field of the earth is a 

prerequisite for various geodetic and geophysical investigations and 

applications. I t  is essential for accurate determination of the orbits of 
artificial satellites, since the earth’s gravitational perturbations are 

(for common satellite altitudes) the moat significant ones experienced 

by the satellites. Accurate gravity field models are also important for 

geophysical investigations of the earth’s interior, and for 

oceanographic studies related to ocean dynamics. 

The estimation of the external gravity field of the earth, on a 

global basis, has been investigated in the past from the theoretical as  

well as  the computational point of view. Improvement in our knowledge 

of the gravity field hae become a continuous effort, primarily due to 

the  following reasons: 

- the quality, quantity and distribution of the necessary data for 

accurate global gravity modeling, is improving wi th  time as well 

as with the development and use of more accurate observational 

systems a8 the modern, highly accurate and stable laser tracking 

systems and the altimeter satellites. 

- the availability of more accurate data requires more rigorous and 

complete mathematical modeling, since the effects of certain 

approximations made in the past become non-negligible in the 

presence of more accurate and complete data. 

1 
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- some of the approximations which were applied in order to make 

the estimation of global gravity models a computationally 

manageable problem, become unnecessary in view of the 

computational resources available nowadays, especially after the 

development of vector processors. Estimation techniques which 

have found very limited or no application in the past due to 
their computational load, can now be implemented and their 

possible m e r i t s  can be investigated. 

Currently, the estimation of global gravity field models is based on 

the combination of information coming from the following main sources: 

(a) Artificial satellite observations, such as  laser ranging, radar 

and optical observations, 

(b)  Terrestrial gravity measurements, primarily gravity anomalies, 

(c) Satellite altimeter observations. 

Satellite observations provide a global sampling of the gravity 

field, but lack detailed information due to the attenuation of the field 

at satellite altitudes (LAGEOS , for example, is practically insensitive to 

harmonics of degree larger than eight). For this  reason, satellite 

observations can support accurate determination of the low frequency 

part of the spectrum of the gravity field, but are inadequate for 
estimation of the medium and high frequency part of it. 

The opposite is true for terrestrial measurements, which provide 

detailed sampling of the gravity field, but lack global coverage due to 

the existing data gaps. 

The altimeter observations constitute a special case of satellite 

observations which provide a quite detailed and accurate sampling of 

the field over the oceanic areas but suffer from the large gaps 

generated by the land discontinuities. Therefore, their character and 

information content correspond, as far as the estimation of the gravity 

field is concerned, more to the terrestrial measurements than to the 
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satellite ones. . 

Consequently, global gravity models developed for "general 

purpose", i.e. both for terrestrial use and for satellite orbit 

computations, need to utilize both satellite and terrestrial data sources 

in a complementary way, so that an optimum determination of the 

gravity field over a wider band of its spectrum could be achieved. A t  

this point "special purpose" gravity models such as PGS-S4 [Lerch et 

al, 1982bl "tailored" to f i t  the orbits of particular satellites (in the 

above case SEASAT) or the Rapp 1977 model [Rapp, 19771, computed 

from terrestrial data alone will not be considered. 

1.1 Previous Inveetigations 

The necessity to determine optimum ways of combining the satellite 

information with the terrestrial data, for the estimation of global 

gravity models, has been recognized early in the past. Investigations 

by Kaula (1966b) and Rapp (1967) resulted in the formulation of two 

main estimation techniques. The basic difference between the two 

methods is the way that the terrestrial gravity data are being treated. 

In Kaula's approach the orthogonality relations are  used in order to 

determine potential coefficients from gravity anomalies. In Rapp's 

approach the problem is essentially inverted and a least squares 

adjustment is used to f i t  a truncated set of potential coefficients to 

the given gravity anomalies. 

Rapp (1969) has compared both analytically and numerically the two 

estimation techniques and has investigated the conditions under which 

they yield s imi la r  results. 

The major disadvantage of Kaula's approach as opposed to Rapp's 

is that the gravity anomalies need to be reduced to a spherical surface 

so that the orthogonality relations can be implemented. On the other 

hand, in Rapp's method a truncated set of coefficients is used to f i t  

the data; consequently, aliasing effects will occur (in general) if the 



4 

data contain frequencies beyond the maximum frequency implied by the 

truncation [Desrochers, 19711. A t t e m p t s  to overcome this problem by 

extending t h e  expansion to higher degrees result in large and 

computationally unmanageable normal matrices. 

A detailed comparison of these two techniques will be presented in 
Chapter IV. 

An alternative approach to the problem was  proposed and tested 

by Colombo (1981). Hi s  method uses again the orthogonalities but now 

a linear estimator, optimal in the sense that it minimizes the sum of 

squares of t h e  coefficient errors, is used in order to provide estimates 

of the potential coefficients. 

These main estimation methods (with some modifications) have been 

implemented in the  past by several investigators to provide combination 

solutions for potential coefficient expansions to various degrees. In 

Table 1 some of these solutions which are currently used in several 

studies are presented. 

Table 1. Some Currently Used Global Geopotential Models 

Rapp78 
GEMlOB 
GEMlOC 
Rapp81 
Hajela84 
GRIM3-L1 
GpM2 
OS U86C / D 
OSU86E/F 

RaPP 
Lerch et a1 
Lerch et a1 
RaPP 
Ha je la  
R e i  gb er 
Wenzel 
Rapp and Cruz 
Rapp and Cruz 

1978 
1981 
1981 
1981 
1984 
1985 
1985 
1986 
1986 

180 
36 

180 
180 
250 
36 

200 
250 
360 
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In view of the wide applications tha t  such gravity models have 

found and the increasing demand for accurate high degree potential 

coefficient expansions, it has become quite critical to investigate and 

reconsider both the modeling and estimation part of the combination 

solutions. 

The implementation of refined models to account for the effects of 

the earth’s ellipticity, the atmosphere and the terrain has been 

investigated by Rapp (1977, 1984, 1986), and special emphasis was 

placed on the problem of the continuation of surface gravity data to a 

spherical bounding surface. Cruz (1985, 1986) has also studied the 

effects of the earth’s ellipticity and of the downward continuation and 

his proposed approach has been implemented in recent high degree 

expansions at The Ohio State University [Rapp and Cruz, 1986a, b]. 

Although (as it is evident from the above) the various aspects of 

the determination of gravity models have been extensively studied in 

the past, it is not reasonable to believe that all the problems have 

found satisfactory answers and that there is no possibility of further 

improvement. Rather , the previous investigations and experiences have 

raised new questions that warrant careful study. 

1.2 Objective and Organization of the Present Study 

Currently, an effort to provide a highly accurate global gravity 

model, to be used for the TOPEX/POSEIDON mission [JPLj 19851, is 

undertaken by three main  research centers: 

(1) NASA/Goddard Space Flight Center (GSFC) 

(2) University of Texas at  Austin 
(3) The Ohio State University. 
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The task here is to investigate optimum modeling and estimation 

procedures for the processing and the analysis of the terrestrial 

gravity information. This information, in the form of a system of 

normal equations referring to a low degree (60) harmonic expansion of 

the geopotential, will then be combined a t  NASA/GSFC with the 

corresponding normal equations obtained from the analysis of satellite 

observations, in order to provide an  optimum combination solution for 

the potential coefficients. 

The potential coefficient estimates obtained from the terrestrial 

gravity data alone, although they do not constitute the final product of 

this work, are obviously of great value for comparison purposes, in 

order to investigate possible problems related to the surface gravity 

data and to indicate necessary improvements in the modeling or 

estimation techniques used. 

The investigation which was conducted in order to accomplish the  

purpose of this study, can be divided into four main parts as  follows: 

(a) Theoretical investigation of the appropriate mathematical models 

that should be used in order to relate the surface mean free-air 

anomalies to potential coefficients. The intention here is to establish 

rigorous mathematical models and avoid any kind of unnecessary 

approximations. These aspects are presented in Chapter I1 in an 

explicit and detailed form, following a step-by-step discussion which, 

starting f r o m  the formulation of Molodensky’s boundary value problem 

(which constitutes the underlying theoretical background of the 

problem at hand), leads to the final analytical formulation used in the 

estimation procedure. 

(b) Description of the available data. The plan in this  study is to use 

the most up to date gravity and elevation information that is available. 

In Chapter I11 the description of the  main data sets that were examined 

and/or used in this study is given, focusing on s o m e  of their 

characteristics that  should be taken into account for the appropriate 
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use of these data and the accurate interpretation of the results. 

(c) The estimation procedure. In this study the estimation of potential 

coefficients from surface gravity is to be made through a least squares 

adjustment procedure as  it was proposed by Rapp (1967). In Chapter 

IV  the detailed formulation of this procedure is given. In addition its 

properties are examined and a comparison of this technique to the 

quadrature formulas is presented. 

(d) The numerical analysis. In Chapter V the results of a number of 

experiments performed, are presented and discussed. These include 

both the results of experiments performed with simulated data, in order 

to examine several aspects of the procedure, and the results obtained 

from actual data. The latter are compared with existing geopotential 

models in order to validate the solutions and investigate the agreement 

of the gravity models implied by terrestrial data alone, w i t h  the 

satellite only or the combined geopotential models. 

Finally, in the last chapter a summary of this work, a presentation 

of the conclusions drawn from it, and recommendations for further 

investigation are given. 



CHAPTER I1 

MODELING OF THE TERRESTRIAL GRAVITY DATA 

2.1 Molodensky's Boundary Value Problem 

The determination of the geometric shape and the external gravity 

potential of the earth from observations carried out on its unknown 

surface, is a non-linear free boundary value problem (bvp), in the 

sense that the geometric shape of the boundary surface is also 

unknown. This geodetic bvp or Molodensky's problem can be 

formulated as follows: 

Given at all points of the physical surface of the earth (S) the 

gravity potential W and the gravity vector 8, find the shape of the 

surface (S), as well as, the potential W outside (S), so that W consists 

of a regular a t  infinity harmonic part V, satisfying Laplace's equation 

OW z 0 and a known centrifugal part, and, satisfies known boundary 

conditions on (S). 

This type of problem can be considerably simplified after 

application of a linearization procedure. Linearization, in the context 

of the modern approach of Molodensky, consists of the introduction of 

a known surface (E), the telluroid, which is "sufficiently close" to the 

physical surface of the earth (S), and the introduction of a normal 

gravity potential U a s  an analytical approximation of the actual gravity 

potential W. A point P on (S) (Figure 1) will be mapped to a point Q 

on (C) through a one-to-one correspondence. The particular rules that 
can be used to define th is  mapping will be discussed in Section 2.1.2. 
The important issue here is that (E) is defined in such a way that the 

value of a function on ( S )  can be obtained from the corresponding 

value o f t h i s  function on (E) by applying a linear correction. If 

8 
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7 = 3, then a Taylor series expansion i n  terms of -1 around (E) can be 

performed, where  all second and higher order terms in 7 can be 

neglected without any significant loss of accuracy (see also the 

discussion at the end of Section 2.1.1). 

After linearization the geodetic bvp becomes a linear non-free bvp 

for the disturbing potential T=W-U, which satisfies Laplace’s equation 

outside (C) with known boundary conditions on (C). Once this problem 

is solved, the deviation 7 of (C) f r o m  (S) can be determined and 

consequently both the external gravity potential W = U t T and the 

shape of the earth ( S )  can be defined. 

The approach outlined above is in contrast to the traditional 

approach of Stokes where gravity observations on the earth’s surface 

are first reduced to the geoid, which in turn is approximated by a 

rotational ellipsoid (spheroid) o r  a sphere. 

2.1.1 The Fundamental Boundary Condition 

Krarup ( 1973) has rigorously linearized the free non-linear geodetic 

bvp. W e  are presenting in the following an outline of his approach 

following Moritz’s (1980) notations. 

The basic geometry associated with our problem is described in 

Figure 1. 

W e  proceed with some basic definitions: 

W = gravity potential of the  earth 

U = normal gravity potential defined through an ellipsoid of 

revolution whose surface is an equipotential surface of its 

gravity f i e ld  (Somigliana-Pizzetti normal f ie ld)  [Heiskanen 

and Moritz, 1967, Sec. 2-71. 
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Actual Plumb 

Normal Plumb Line 

Straight Ellipsoidal 
Normal Through P 

1 uroid 
const 

IO 

h h - Ellipsoid 
d Qo u = uo 

Figure 1. Basic Geometry Associated With Molodensky’s Boundary Value 
Problem. 

gravity vector: 3 = gradW 

normal gravity vector: 

potential anomaly: 
gravity anomaly vector: 
disturbing potential:  
gravity disturbance vector: 

height anomaly vector: 

7 = gradU 
AW = W p  - UQ 

+ 
Ag = $p - ?Q 

TP = W p  - Up 

d = 2 p  - qp 
7 = 3 

W e  have 

Up = UQ + (gradU)p? 

where the dot is used t o  denote scalar product, and 
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?bP = ?a + Ma? 

where 

J Z U  a z u  - -  ' J z U  - 
Jxz JxJy axJz 
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(2.91 

(2.10) 

~ 

' Q  

is t h e  (second-order) normal gravi ty  gradient  tensor  (Marussi t enso r ) .  

From (2.2) and (2.8) w e  have 

UP = UQ + ?a? (2.11) 

Similar ly ,  

However, s ince  gradT-7 is O ( ( . l )  i t  can be neglected i n  t h e  context of 

l i nea r i za t ion ,  so t h a t  

Tp = TO (2.13) 

Omissions as the above will be uniformly applied in t h e  following 

(S)  derivations. 

and (E) as far as q u a n t i t i e s  of t h e  anomalous f i e l d  such a s  T, Ag, 

gradT, 3 etc. are concerned [Moritz, 1980, pp. 339-3411. 

In other words, no distinction will be made between 
+ 

Hence, 

AW = Wp - Up 
= Tp + U p  - UQ 
= T~ + uQ + .itp.? - U, or 

AW = TQ + 

and 

-9 
= S P  - 9, 
= S P  - ?bP + Ma3 
= [grad(W-U)]p + Ma? Or 

(2.14) 
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- -  cos+cosh - 
P2 

P 2  
- -  cos+sinh 

L 

+ 
Ag = (gradT)p + Ma? 

and since (gradT)p (gradT)a one f inal ly  has 
+ 
Ag = (gradT)p + Mol (2.15) 

Assuming that det(Mo) f 0 ,  so t h a t  Ma-1 exists one has from (2.15) 

+ 7 = M0-l[Ag - (gradT)o] 

so that  (2.14) can be w r i t t e n  as 

-+ 
To + iha-(gradT)o = AW + iho-Ag 

where 

$0 = -MQ-”~)Q 

(2.16) 

(2.17) 

(2.18) 

defines a vector tangent to the isozenithal lines [Moritz, 1980, p. 3451 
of the normal gravity field. Equation (2.17) is the fundamental 

boundary condition of the linearized Molodensky bvp. 

Introducing the orthogonal curvilinear coordinates p,  0 ,  X where + 
is the normal latitude, A the normal longitude (see also [Moritz, 1980, p. 

3381) and p is measured along the isozenithal, we can define a set of 

generalized coordinates as 

With respe 

(2.19) 

t to these coord,,iates, equation (2.17) takes the form 

[Moritz, 1980, pp. 342-3481 

1 
0 7 0  

(2.20) 
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where 

7 is the magnitude of  t h e  normal gravity vector 7 

T is the arc length along the isozenithal line 

Ag’ is the magnitude of t h e  projection of Ag along t h e  isozenithal 
line passing through Q. 

+ 

+ 

According to the above, the procedure for the determination of ( S )  

and W can be idealistically outlined as follows: 

A t  every point P on ( S )  gravimetric and astronomical observations 

provide the magnitude and direction of the gravity vector 2p. On 

the other hand, leveling combined with the gravimetric 

observations provide the gravity potential W up to an unknown 

constant that can be determined indirectly by distance 

measurement(s) [Heiskanen and Moritz, 1967, Sec. 2-19, 2-20]. 

A t  every corresponding point Q on the telluroid (E) the magnitude 

and direction of the normal gravity vector can be computed 

since both the surface (E) and the normal gravity potential are 

known. 

The direction of the isozenithal line passing through Q can be 

determined, once the normal potential is defined. Hence the 

magnitude of the isozenithal projection Ag’, of G, can be 

determined. 

Once the mapping P + Q, that defines the telluroid ( C )  is 

established, the quantity AW in (2.20) will be defined. Hence, (2.20) 

takes the form 

wi th  known constant coefficients 

(2.21) 



c1 = -1 
1 
YQ c z  = -  

C, = Ag’ + CzAW 
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(2.22) 

(e) Disregarding the fact that the telluroid can be below the surface 

of the earth [Moritz, 1980, p. 3551, and assuming that the  effect of 

the m a s s  of the atmosphere has been taken into account [ibid, p. 

4421, w e  can consider the  disturbing potential T to be harmonic 

outside (E), Le. 

v Z T  = 0, outside ( E ) .  (2.23) 

Consequently, the problem here is to solve (2.23) for T, subject to 

the boundary condition (2.21). This corresponds to a third bvp of 

potential theory (Robin’s problem - see [Lebedev et  al., 1979, p. 271) 

although it is considerably more complicated because it involves oblique 

derivatives (the isozenithal lines are not normal to the telluroid ( E ) ) .  

In any case once this  bvp is solved for Tj then 7 (and thus the 

geometric shape of S) can be obtained from equation (2.16). 

The steps outlined above are meant to describe the principles 

behind t h e  formulation of Molodensky’s bvp. From the practical point 

of view, the prerequisites of Molodensky’s problem, especially the 

continuous coverage of the whole earth’s surface with gravity 

measurements raise serious questions about the relevancy of the 

problem itself from the geodetic point of v iew [Moritz, 19801. 

Although equation (2.20) is theoretically rigorous, it is not 

convenient for practical purposes, due to the presence of the 

isozenithal in both the definition of the directional derivatives J / J T ,  

and of Ag’. However, since the  curvature of the normal plumb line is 

very small and regular [Heiskanen and Moritz, 1967, p. 196; Moritz, 

1983, p. 71, the normal plumb line can be considered to coincide w i t h  

the straight ellipsoidal normal, in which case the isozenithal will also 

coincide with the straight ellipsoidal normal [Moritz, 1980, pp. 345-3461. 
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Accordingly, if 

isozenithal a normal plumb line 15 straight ellipsoidal normal (2.24) 

equation (2.20) becomes 

(2.25) 

where Ag’ is hereon to be considered t h e  magnitude of t h e  ellipsoidal 

normal projection of Ag andh denotes the arc length along the 

ellipsoidal normal. 

--$ 

Consider now, (8~9 8+, $ ~ } p  the unit vectors on the three axes of 

the local astronomic f r a m e  (east, north, zenith) at P, and @A, $9, $h}p 

the corresponding unit vectors for the local normal f r a m e  (Figure 2);  

then 

where  8 is the total deflection of the vertical and t ,  7 are its 

latitudinal and longitudinal components respectively [ Heiskanen and 

Moritz, 1967, fig. 2-13], 

=Q 

\ \  ‘ 
I IX > \ I  

I 

Figure 2, The Local Astronomic and Geodetic Frames. 
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The gradient of the gravity potential with respect to the local 

normal frame is 

(2.27) 

where M and N are the meridional and prime vertical radii of curvature 

respectively. Accordingly, 

Ag' = -(tP - ?Q)'$hp 
Ag' = -(gradW)p-&,p - I?pl  

or 

(2.28) 

If we assume that point Q 
through P then 

$ha = *hp 

and (2.28) yields 

- l & l  = Ag' + [E] 
P 

- JW aW - - -  
[MJ+ a+ -k NcosOJA 

or 

lies on the straight ellipsoidal normal 

(2.29) 

(2.30) 

Adding (2.30) and (2.31) by parts one finally gets 

or 

Ag = Ag. + E P  

with 

aW 1 aW aW 
t p  = [(1-cos8) - ah - (=- 71 NCOSOJA 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

and Ag = lgpl - I ~ Q I  being the usual gravity anomaly as  obtained from 

surface observations of the magnitude of the gravity acceleration. 
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According to the above, equation (2.25) becomes 

(2.35) 

which is the form of the boundary condition of the linearized version 

of the geodetic bvp, that will be used in the sequel. Jekeli (1981), 

using the s a m e  assumptions as above, arrived at the form (2.35) of the 

fundamental boundary condition using a Taylor series expansion in [ 

and neglecting second and higher order te rms .  

I t  should be noted here that c p  depends on the mapping used to 

define the telluroid, since to derive (2.34) one had to assume (2.29) 

which restricted Q to lie on the straight ellipsoidal normal through P 

and thus has removed t w o  of the three degrees of freedom for the 

determination of the location of Q. 

Concluding this section some remarks should be made about the 

validity of the linearized version of the geodetic bvp. A s  it is shown 

by Jekeli [1981, eq. 4.6, 4.71 linearization causes an error on the order 

of 

for t he  height anomaly, and on the order of 

(2.36) 

(2.37) 

for the gravity anomaly. Using nominal values one has an error on 

the order of 3 mm in the height anomaly and 1.5 pgals in the gravity 

anomaly. Hence, in view of the present accuracies, linearization is 

completely justifiable. 
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2.1.2 Definition of the Telluroid 

In t h e  previous discussion the mapping that defines the telluroid 

w a s  left unspecified. The general requirement was  that this  surface 

should be sufficiently close to the earth's surface, so that linearization 

could be performed. However, as was  mentioned, the form (2.35) of the 

boundary condition that will be used, implicitly restricts part of the 
definition of the telluroid point Q. 

The introduction of different mappings to define the telluroid s t e m s  

from the fact that for certain mappings the form of the boundary 

condition becomes simpler .  For the Marussi mapping [Moritz, 1980, p. 

3381 defined by 

(2.38) 

and the gravimetric mapping [ibid, p. 3391 defined by 

l ip  = "a (2.39) 

the potential anomaly AW and the gravity anomaly vector Ag become 

respectively zero, making the right side of the boundary condition 

(2.17) simpler. The mapping that will be adopted here is defined as 

follows: 

If 

+ 

c p  = wo - wp (2.40) 

is the geopotential number at P [Heiskanen and Moritz, 1967, p. 561, 

then the telluroid point Q that corresponds to P lies on the ellipsoidal 

normal through P and is such that 

UQ = uo - c p  (2.41) 

where Uo is the potential on the surface of the equipotential reference 

ellipsoid. 

According to this definition the potential anomaly becomes 



AW = W p  - UQ 
= Wo - C p  - Uo + C p  or 

AW = Wo - Uo = const. 

19 

(2.42) 

i.e. represents the constant difference between the potential on the 

geoid minus the potential on the surface of the reference ellipsoid. 

Even if one assumes that Wo = Uo, this mapping is different from the 
Marussi mapping because here 

Rather, one can say (neglecting the curvature of the normal plumb 

lines) that in this mapping 

(2.43) 

The form (2.35) of the boundary condition which has been adopted is 

in agreement with the above definition of the telluroid. 

Dermanis (1984) has rigorously derived the fundamental boundary 

condition on the telluroid for the Marussi mapping in terms of 

curvature parameters [Dermanis, 1984, eq. 533. He has also given the 

corresponding form of the boundary condition on the reference 

ellipsoid in terms of ellipsoidal, geodetic and spherical coordinates 

[ibid, eq. 82, 85, 861. 

2.2 Gravity Anomaly and Potential Coefficient Relatione 

The linearization procedure a s  presented before has lead to the 

boundary condition 

A g  = -[%IQ + [~],TQ - 2 [ Z l Q A W  + 7Q 
(2.44) 

with 
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(2.45) 

J JW JW 
Ep = [(1-COSO) ah - %G- 

valid under the approximation (2.24) on the telluroid (E) as defined by 

(2.29), (2.40), and (2.41). The geometry of the original problem (Figure 

1) has now been simplified, due to the approximations (2.24) and (2.29), 

and is now described in Figure 3. 

However, since both the geometrical shape and the gravity field of 

the reference ellipsoid differ from the corresponding features of a 

homogeneous rotating ball by quantities on the order of the flattening 

(- 1/300), one can expand geometrical and dynamcial quantities refering 

to the ellipsoid around their llspherical'l values in a Taylor series in 

terms of any parameter characterizing the departures from the 

"spherical case" (e.g. f J  ea,  e '2 ,  etc.). Truncation of such series to 

Terrain (SI - + const \ I  
Geop 
w = w  

P 

Telluroid (I) 
U # const 

Spherop 
,P p -------- 

-u - UP hr I fl- 
t '0 

1-11 - - - - - - - - - -  h 
-Ellipsoid 

Qo u = uo 

Figure 3. The Geometry Associated with the Boundary Condition (2.44). 
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different orders, results in different approximations. For example, 

omission of all but the zeroth t e rm results in the well known "spherical 

approximation" [Moritz, 1980, Sec. 4.21. It should be carefully kept in 

mind that such series expansions are not meant to change either the 

reference surface, which always remains the telluroid, or the 

computation of normal gravity at the telluroid points. Such 

computations should be carried out to a high degree of accuracy. 

The importance of these series expansions rests on the fact that 

their zeroth order (spherical) t e r m s  provide, through the boundary 

condition, a simple way of relating gravity anomalies to potential 

coefficients through a spherical harmonic representation. The 

remaining ellipsoidal terms due to their small  magnitude can be treated 

otherwise. 

In the following, the form of the boundary condition when 

ellipsoidal t e r m s  to O ( e a )  are modeled ie presented, following Jekeli's 

(1981) formulation. 

2.2.1 The Boundary Condition Considering Ellipsoidal Terms to Order 

e2 

Consider through the telluroid point Q a coordinate surface 

[Heiskanen and Moritz, 1967, Sec. 1-19], u = bQ (Figure 4). For each 

telluroid point Q the corresponding coordinate surface will have 

constant linear eccentricity (by definition), but a different semi-minor 

axis u t  = b Q f .  Accordingly, since 

(2.46) 2 -x E = bQi ( l - e f )  el 

each coordinate surface will be characterized by a different 

eccentricity e l .  However, to the accuracies involved here and for 

points close to the earth's surface, the eccentricity of all coordinate 

surfaces can be considered constant, equal to the eccentricity of the 

reference ellipsoid [ Jekeli, 1981, p. 1221. Consider a local spherical 
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coordinate system at  Q (Figure 4) with unit vectors Sro i n  the 

direction of the geocentric radius and positive outwards, $8 along t he  Q 

erQ 

>Telluroid (X) 

Coordinate Surface 

‘f I 
bQ 

-I Reference 
El 1 ipso id \ v ~ o = v ~  

1 I c I / 

Figure 4. The Coordinate Surface Through the Telluroid Point Q. 

increasing geocentric co-latitude and $ha along the increasing 

longitude. Then 

t h o  = cos$ptr0 - si%Sgo (2.47) 

and the gradient vector with respect t o  t h i s  system becomes 

Since , 

w e  have 

It can also be shown easily that t o  the order of ez,  

(2.48) 

(2.49) 

(2.50) 
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(2.51) 

(2.52) 

On t h e  o ther  hand, the  normal gravity potential U is given by 

[Heiskanen and Moritz, 1967, Sec. 2-91 

(2.53) 

where G is t h e  Universal g rav i ta t iona l  constant 

M' is t h e  mass of the reference e l l i p s o i d  ( r . e . )  

a is t h e  semi-major axis of t h e  r.e. 

w is t h e  ro t a t iona l  rate of t h e  r.e. 

JZ n are the even degree zonal harmonic coe f f i c i en t s  of t h e  

normal grav i ty  f i e l d  

P,,(cosB) are t h e  even degree Legendre polynomials. 

However, since J Z n  = O ( e z n ) ,  equation (2.53) t runcated to t h e  O ( e 7 )  

becomes 

2 

U ( r ,  8) - y[l GM' - J2[:] P,(cosB)] + 1 w2r2sin28 

Hence, 

(2 .54)  

+ e2sinecos8 - JU r = - x = -  ar rae y i e l d s  f o r  po in t  Q J U  

GM' 2 

2 [I - 352 ["I PZ(COS~Q)] - u2rQsin28Q (1 - e2cos28Q) rQ rQ Y Q  (2.55) 

and 

?Y = - e2sinecos8 y i e lds  f o r  Q ah a r  rae 
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Inserting (2.55) and (2.56) to (2.44) and carrying out t h e  algebra 

consistently omitting terms smaller than O(ez), one finally gets 

Ag = - 

+ 

+ 

which is 

ellipsoidal 

[:IQ - rq 2 Ta 

az 3oar sinZ8p]Ta 
rQ 

e z s i n B ~ c o s 8 ~ ( ~ ) p  aT + [6Jz 9 Pz(cos8~)  - cM? 

AW - [6JZ 7 aa P,(cos&,) - 3wzr GM.o s inZBQ]AW + (2.57) ra r0 

t he  f o r m  of the fundamental boundary condition when 

terms are considered only up to O(e2). The following 

abbreviations will be used: 

(2.58) 

87 = [SJZ - a2 P ~ ( c o s ~ )  - - 3 w a r 2  s inz8]T (b) J r3 GM' 

2.2.2 Spherical Harmonic Representation of the Gravity Anomaly 

For the moment let us assume that there are no masses outside of 

the telluroid. Then, if V and V'  are  the gravitational potentials of the 
earth and the reference ellipsoid respectively, then they are both 

harmonic in the space outside of the telluroid. Hence they can both be 

expanded into series of solid spherical harmonics [Heiekanen and 

Moritz, 1967, Sec. 1-91 a8 

and 

where 

(2.60) 
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is the m a s s  of the earth (in contrast to M' which denotes the 

m a s s  of the ref. ellipsoid) 

are the fully normalized associate Legendre functions of the 

first  kind 

are t h e  ful ly  normalized potential coefficients (referring t o  

the earth's gravitational f ie ld)  

are the corresponding coefficients of the ellipsoidal f i e ld  

always denote geocentric radius, co-latitude and longitude 

respectively. 

The difference 

6M = M - M' (2.61) 

is assumed to be suffic-mtly small that for the first and higher order 

t e r m s  M' can be replaced by M in (2.60). 

If the rotational rate of the reference ellipsoid is assumed to be 
the s a m e  as the actual rotational rate of the earth then 

As the difference of two harmonic functions is harmonic in the space 

outside (E) so that 

G6M GM n n  
T ( r , B , X )  = - + - l' &o(~~mcosmh + ~nmsinmA)~n,(cos9) (2.63) 

r r n=1 

with 

- C,, - C,, if m = 0, n = 2k, k E  N 
C:, = I -  (2.64) 

Cnm otherwise 

Inserting (2.63) into (2.57) one gets 

302r02 sin2tIQ] AW 

+ E P  (2.65) 

2 a2 
+ (Eh)Q + + 4 6 J 2  3 rQ PZ(COS9Q) - GM 
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where M' has been replaced by M in the sixth term following similar 

reasoning as before (equation (2.60) ). 

2.3 The Mathematical Model - Practical Aspects 

Equation (2.65) constitutes the fundamental mathematical model 

which establishes the functional relationship between the gravity 

anomaly Ag and the potential coefficients {c$,,,, s,,}. Therefore, it 
provides the basis for the formulation of observation ecruations to be 

used in a least squares adjustment for the estimation of {c?&,, s,,} 
f r o m  Ag. The variables appearing in (2.65) are classified as  follows: 

(a) Observed quantities are considered the gravity anomalies Ag, while 
unknown parameters are the potential coefficients {e:,,,, s,,}, as well as  

the quantities GdM = GM - GM' and AW = Wo - Uo. 

(b)  The quantities {a, GMj J2, O }  are constants and refer to the 

adopted mean earth ellipsoid, while {r, 8, A}, are considered known for 

each telluroid point Q. 

Prior to the formation of the observation equation it is necessary 

to examine how the available data comply with the requirements and 

assumptions of the mathematical model and to determine the reductions 

that need to be applied to the data and the modifications that should 

be made to the  model so that any incompatibilities between the  model 

and the data are removed. 

Also, the varying magnitude and information content of the 

components of the mathematical model justify special treatment of 

certain terms (such as  8h  and E ~ ) ,  so that a more computationally 

convenient formulation can be achieved. 

These aspects will be discussed in detail in the following sections. 

As a result of this discussion the final formulation that w a s  used in 

the computations will be presented. 
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2.3.1 The Observable 

The primary observable from terrestrial measurements is the 

magnitude of the gravity acceleration gp = 12pl at the surface point P 

(see Figure 5). 

To evaluate the surface free-air gravity anomaly A$ [Heiskanen and 

Moritz, 1967, p. 2931, which appears in equation (2.65), it is needed to 
evaluate the magnitude of the normal gravity acceleration 79 = lyQl at 

the corresponding telluroid point Q. 

If Y Q ,  denotes the normal gravity at the footpoint Bo on the 

surface of the reference ellipsoid (Figure 5), then 

I 
t- 

I \  \ Reference 

Figure 5. Geometry Associated With the Observable. 
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(2.66) 

s i n c e  the distance tal is, according t o  the definition used here 

for the telluroid, the normal height H' [ibid, p. 2921 of the surface 

point P, However, it is known [ibid, p. 3281, that H* (which is usually 

unknown) differs from the orthometric height H at P (which is more 
readily available) by about one meter in the worst cases (mountainous 

areas). Accordingly, without significant loss of accuracy one has 

1 
70 = T Q ,  + [z] H + 5 [s] HZ + ... 

Q O  Q O  

and the surface free-air anomaly becomes 

(2.67) 

(2.68) 

or [ibid, p. 293, eq. 8-91 

where 

a-b f = -  
a 

and 7Q0 can be evaluated using Somigliana's closed formula 

with the equatorial and polar normal gravity 7= and 7p given by 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

(2.74) 
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with [Moritz, 1984, pp. 388-3981 

3 3 
qo = $ [[I + F l a r c t a n  e’ - -1 e’ 

qi = 3[1 + &][1 - 7 1 arctan e#]  - 1. 

(2.75) 

(2.76) 

Apart from the approximation of H8 by H, evaluation of the surface 

free-air gravity anomaly by equation (2.69) would be in agreement with 

the requirement of the mathematical model (2.65). 

Additional discussion related to the surface free-air anomaly will be 

made in Chapter I11 where the description of the actual data used in 

this study is given. 

2.3.2 Atmospheric Effect 

In deriving equation (2.65) i t  was assumed that there are no 

masses outside the telluroid. However, even if we  neglect the fact that 

the telluroid can be below the surface of the earth, there still exists 

the effect of the atmosphere that needs to be taken into account. 

To illustrate the  effect w e  will use a simplified atmospheric model 

which assumes spherical stratification [Moritz, 1980, pp. 422-425 1. 

P 
_ a _ - -  - -  

-e-. . . . 
0 . .  

. . . .  . 

I 

I 

Figure 6. Atmospheric Correction. 
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The magnitude of the atmospheric attraction at the surface point P is 

in general (Figure 6) 

- G m  (2 .77)  
r P a  

Fatrn - 

where m(rp)  is the atmospheric mass below the sphere passing through 

P (radius rp). 

If MA denotes the total m a s s  of the atmosphere then 

Fat,,, = G % - 
r P  

where M ( r p )  is the 

Fatm needs to be 

(2.78) 

atmospheric mass above the sphere of radius rp. 

subtracted from the observed gravity gp for the 

effect of the atmosphere to be removed. However, if in the definition 

of the normal potential, the m a s s  of the reference ellipsoid includes the 

mass of the atmosphere (as in GRS67 and GRS80) then, to remove the 

atmospheric effect from the gravity anomaly Ag it is required that the 

t e r m  

(2.79) 

be added to the  gravity anomaly as  obtained from (2.69). 

Tabular values of 6gA are given, as a function of the elevation 

above sea level [IAG, 1971, p. 723. These values have been computed 

based on a nearly-ellipsoidal stratification model and the use of two 

standard atmospheres, the CIRA 1961 and the U.S. Standard 

Atmosphere. The tabulated values represent rounded averages from 

these two atmospheric models. For computer implementation a 

convenient way to interpolate is to use a polynomial of the elevation 

that fits the tabulated values. Wichiencharoen (1982) performed such a 

polynomial fit; the following quadratic is the result; 

(2 .80)  

This quadratic has been used in this study for the calculation of the 

atmospheric corrections 6gA. As it is obvious from (2.80) 6gA amounts 

I 
I 
1 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
I 



31 

to about 0.9 m g a l s  at sea level (where the correction is maximum). The 

indirect effect (shifting of the level surfaces due to the condensation 

of the atmospheric mass on the earth’s surface) will not be considered 

due to its small magnitude (-0.7 cm at sea level) [Moritz, 1980 p. 4251. 

2.3.3 Ellipsoidal Effects  

A s  it can be seen from equations (2.58a, b) the unknown potential 

coefficients {exm, grim} appear on the right side of equation (2.65) not 

only in the harmonic sum but also in the t e r m s  E h  and zr. However, 

the magnitude and information content (see also Appendix A) of these 

t e r m s  suggest that it is neither reasonable from the estimability point 

of view, nor computationally convenient, for such terms to be 

incorporated into the design matrix of the adjustment. Rather, it is 

preferable to evaluate 8h and z7 beforehand, based on some prior 

information for the unknown coefficients and apply these terms as 

corrections to the observations. 

It will be assumed here that a set of potential coefficients complete 

to maximum degree and order N,,, is known (e.g. Rapp81 or OSU86F). 

Assuming, for the present purpose that  these coefficients refer to a 

mean earth ellipsoid with mass equal to the mass of the earth and 

center coinciding with the  center of m a s s  of the earth one has (see 

also equation (2.63)). 

where  ( - )  is used to denote that the truncated series with the a priori 

coefficients provides only an approximation to the true value of the 

disturbing potential. Using the well known relations 

and 

3 1 
2 p,,(cose) = 5 cosae - - 

sinatl  = 1 - cos28 

the  abbreviations 

(2.82) 
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- n(n-m+l)(n-m+2) 
(2n+1)(2n+3) 

n -3m2+n 
(2n+3)(2n-l) 

Jn+l) (n+m) (n+m-lL 

(2.83) 

one has from (2.58a) and (2.58b) 

and 

Using the normalization factors 

(2n+l)(n-m-l)(n-m) n b 2 , m 4 n  
Unm = (2n-3)(n+nrl)(n+m) 

- (2n+l)(n+m+l)(n+m+2) o,  
Vnm - (2n+5)(n-m+l)(n-m+2) 

(2.85) 

(2.86) 

(2.87) 

[Moritz, 1980, p. 321, de the recursive relations for sinecose 
39-46] and for cosaOPnm [ibid, p. 326, eq. 39-76] one finally has 

with [ibid, p. 321, eq. 39-47] 

(2.89) 
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with [ibid, p. 326, eq. 39-77] 

n-m+l)(n-m+2) 
dnm = ( (2n+1)(2n+3) 

- 2n2-2m2+2n-1 
- (2n+3) (2n-1) 

- (n+m) (n+m-1) 
Ynm - (2n+1)(2n-l) 
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(2.90) 

(2.91) 

Using the abbreviation - A 

&,,,,(A) = C?,cosm~ + Snmsinmh 

from (2.84) and (2.88) one gets 

Nmax n n .. - 
;h = cl[ n-2 8 [f] m~oDnm(h)a~mVnmPn+Z,m 

n n -  
+ n = Z  'Fax[:] m= c 0 Dnm(A)bnmPnm 

while from (2.85) and (2.90) one gets 

(2.92) 

(2.93) 

(2.94) 

Using equations (2.93) and (2.94), the ellipsoidal terms g,, and Ely can 
be computed from a set of potential coefficients complete to maximum 
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degree and order N,,,. 

A s  it will be seen in the next section, the actual evaluation of the 

ellipsoidal terms ih and l7 in this  study was  made in t e r m s  of area 

mean values (see equations (2.111) and (2.112)), so that these 

corrections are compatible with the data used here. 

From the previous discussion it becomes clear that  the approach 

adopted here for the computation of the ellipsoidal corrections is the 

reverse of the one proposed by Cruz (1986) and implemented in the 

development of the OSU86 series of high degree geopotential models 

[Rapp and Cruz, 1986a,b]. In this formulation the corrections are 

applied to the gravity data and not to the potential coefficients 

obtained from them. The reason, being rather obvious, is tha t  the 

combination solutions for the TOPEX gravity models are to be 

performed at NASA/(Goddard Space Flight Center) and not a t  the Ohio 

State University. Hence, operationally corrections to the coefficients 

obtained f r o m  these solutions cannot be applied. The normal equations 

formed from surface gravity should include any systematic reductions 

necessary to make t h e m  compatible with the satellite data derived 

normals. 

In Appendix A numerical values related to the magnitude of these 

corrections and Figures illustrating their geographical distribution are 

given. These, compared to the corresponding Figures given in [Cruz, 
19861 verify the equivalence between the two methods. 

2.3.4 Transition from Point to Area M e a n  Values 

To this point the  discussion on the modeling of surface gravity 

data was restricted to point value considerations. The gravity anomaly 

Ag in equation (2.65) represents a point value referring to the telluroid 

point Q or equivalently (see discussion after equation (2.13)) to a 

surface point P. However, for global gravity modeling one is 
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restricted, in practice, to use area-mean values of Ag, due to the lack 

of point data and economy considerations. 

Area-mean values of Ag, hereon to be denoted by ig, are usually 

defined over either equi-angular or equal-area blocks. In view of the 

data to be used in this study (see also Chapter 111), it will be 

considered in the following tha t  i g  refers to equi-angular blocks, i.e. 

blocks bounded by meridional and parallel arcs of equal angular extent. 

Consider an equi-angular grid on the ellipsoid and let AX be the 

angular distance between two successive meridians. Such a grid forms 

N = n/AX latitudinal bands and 2N longitudinal sectors on the ellipsoid, 

creating in total 2N2 equi-angular blocks. Each block will be hereon 

identified by two subscripts i and j, implicitly defining the latitude 

and longitude bounds of the block, so that Q o  = n/2, 4 N  = -n/2 and A,, 

= 0, hzN = 2n. 

Let  Hid denote the mean orthometric height of the ijth block. 

Then i g  i j is interpreted to represent the average behavior (value) of 

the spatial function Ag(r,e,X) over the surface ui located at constant 

c?;qtdnce H i  
- 

from the surface of the reference ellipsoid (Figure 7). 

Figcre 7 Geometry of the Surface Element u t  J. 
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I t  is obvious that although H i j  is considered constant over the 

block, the geocentric distance r varies (in the latitudinal direction) 

over the surface element ui j .  L e t  

(2.95) 

be the geodetic coordinates of the center of the i j th block. Then 

where 
- - - 
X i  = ( N i  + Hij)cos+icosXj 

Yi  = (Ei + Hij)cos+isinhj 

zi 

- - - - 

- 
= [Ni( l -ez) + Tit j ]sin&i 

For an arbitrary point on ui j  with geodetic lati tude 0 w e  have 

One can easily find [see also Rapp, 1983b, p. 67, eq. 481, that 

(2.97) 

wi th  

a - 

- a( 1-e2) 

(2.96) 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

The t e r m  Jr/J+ as it can be seen from (2.99) becomes maximum (in the 

absolute sense) around 4=45", where its value is about -370 m/deg. 

H e r e  the variation of r over the surface ui will be disregarded and it 

will be assumed that r = Fi Additional discussion 

on this approximation is given in Appendix A. 

= const. Over ui  j. 
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Now consider equation (2.65) and apply on both sides the integral 

operator 

(2.102) 

which represents the surface integral over the surface element b i  

(where r = Fij  = const.). 

a i  

If (2.65) is divided by the spherical area of 

(given by Int{l}), then the left side becomes 

Int{Ag(r=F, j ,  8, A)} 

Int { 1) 
(2.103) 

which represents the area-mean value &gi of Ag(r ,B,A) over the 

surface element ai j .  Accordingly, from (2.65) one gets 

+ Ii,!,j+ Ii;j+ alGGM + a,AW + IE, i J  

where 

[cos) r n h a  sin 

IE;’ = Int{zp) 
i 

(2.104) 

(2.105) 

(2.106) 

(2.107) 

(2.108) 

(2.109) 
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a2  =,- 2 [ ~ J z  7 a2 -+ O'iiJ21 GM   COS'^^ + C O S ~ ~ C O S ~ ~ + ,  + cos28i+l )  
ri J 

(2.110) 

The terms I i k J  and 16;J are computed f r o m  equations (2.93) and (2.94) 
respectively, after averaging over the surface element a +  j. However, it 

can be verified numerically that without significant loss of accuracy 

these terms may be evaluated on the surface of the ellipsoid rather 

than on the ground level. Hence 

Nma x 

where 

(2.111) 

(2.112) 

(2.113) 

and F E ~  is obtained from (2.96) and (2.97) for Hi = 0. The terms c;, 

c;, c; are computed from (2.83) by replacing r with F E ~ .  The 

geocentric co-latitude 8 appearing in the above equations is computed 

from the geodetic latitude by 



arctan[(l-e2)tan0] e = - -  n 
2 
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(2.114) 

In addition, since we have assumed constant orthometric height & 
over the ijth block, the atmospheric correction 6gAJ to be applied to 

&3i j will be given by equation (2.80) for H = Hi] .  Hence, the 

mathematical model relating area-mean values of surface free-air 

anomalies to potential coefficients becomes 

- 

+ Ii,!,j + Ii$j + a,GdM + a2AW + IS;' (2.115) 

2.3.5 V e r t i c a l  Datum Inconsistencies 

Modeling of a global set of gravity anomalies based on equation 

(2.115) assumes that all gravity anomalies i g f  refer to a unique global 

vertical datum. In the absence of such a datum it is possible that 

subsets of a global gravity data base contain anomalies referring to 

different (regional) vertical datums. Such inconsistencies between the 

data have to be considered in the mathematical modeling [Rapp, 19841. 

Let H* be the normal height [Heiskanen and Moritz, 1967, p. 2921 of 

a point P with respect to a unique (but unknown) fundamental level 

surface, and €It t h e  normal height of the s a m e  point referring to the 

k t h  regional level surface. Then the normal gravity 7 p  for the 

corresponding telluroid point Q is (see equation (2.66)) 
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or 

(2.116) 

where 71 is the normal gravity computed from elevation information 

referring to the regional level surface. Hence, 

(2.117) 

where Agk denotes the gravity anomaly that refers to the k t h  regional 
reference level surface. Parametrization in terms of potential 

differences is also possible since [Heiskanen and Moritz, 1967, eq. 4-44] 

and 

c, = w o  - w, 
c, = wo - w, k k 

so that 

k k k AC; = C, - C, = Wo - Wo = AWo 

Accordingly, equation (2.117) becomes 

Ag Agk - [[%IQ + [s] H:]AWt 
7 0 ,  0 Q O  

In terms of area-mean values equation (2.122) takes the form 

(2.118) 

(2.119) 

(2.120) 

(2.121) 

(2.122) 



41 

(2.123) 

According t o  (2.123) equation (2.115) becomes 

+ Iit’ + alGGM + a,AW + a3AW: + IE;’ (2.124) 

with  

(2.125) 

A s  it can be seen from equations (2.110) and (2.125) 

a, 2 -a3 (2.126) 

a relationship which expresses none other than the fact that AW and 

AW& cannot be recovered simultaneously from gravity anomaly 

observatione alone. Rather their linear combination 

(2.127) k AW - AW: = Wo - Uo 

is the only parameter that one might attempt to recover from such data. 
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2.3.6 Computational Formulas 

Equation (2.124) represents the mathematical relationship between 

surface mean free-air gravity anomalies and potential coefficients, when 

atmospheric effects, ellipsoidal effects to O ( e z )  and vertical datum 

inconsistencies are taken into account. I t  is valid with respect to an 

arbitrary reference ellipsoid since the terms G6M and AW are accounted 

for. Before presenting the final formulation used in this study two 

specific terms in (2.124) must be considered. 

The term alGGM + azAW will give rise to a nearly constant t e r m  in 

the gravity anomaly if evaluation of (2.124) is made on the surface of a 

sphere (radius R). It can be easily seen that in such case 

G6M + ' AW -[6Jz ~3 az IPao - - U Z R Z  IP2 AW. alGGM + azAW = - RZ R (2.128) GM 

The values of G6M and AW are anticipated to be in the order of the 

uncertainties of the currently used best estimates of these parameters 

(see also Rapp, 1983a). Consequently, t h e  very long wavelength 

latitudinal variation caused by the last term can be neglected in view 

also of the magnitude of its coefficient. Note that the average gravity 

anomaly over the sphere R is independent of this term, since its effect 

will be eliminated if alG6M + azAW is averaged over the whole sphere. 

If the latitude dependence of alGGM t a 2 A W  is neglected, one has 

G6M 2 
rij Ti j 

alGGM + azAW - 7 + - AW 

or 

alG6M + azAW - 7 
ri j 

(2.129) 

In the analysis of gravity anomalies located on the surface of the 

earth, the difference between F i  and R is disregarded and (2.129) is 

written as 
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(2.130) 

with R being a mean earth radius. 

in the harmonic summation in equation (2.124) so that 

This t e r m  can now be incorporated 

where 

-* G6M 2RAW coo = - - - 
GM GM ' 

(2.131) 

(2.132) 

If AW=O, then equation (2.131) is rigorously equivalent to (2.124). 

However, if AW+O, then (2,131) and (2.132) provide only an 

approximation to (2.124). As it is explained later, in the analysis of an 

incomplete set of gravity anomalies on the surface of the earth it is 

crucial to incorporate the et,, t e r m  in the modeling, even if GGM=AW=O, 

due to the correlations between the  unknowns arising from the 

incomplete coverage. The recovered ifo from such analysis may then 

be interpreted according to (2.132), mainly to check the consistency of 

the solution, since physical constants such as GM and Wo (which is 

related to the semi-major axis a) are more accurately determined from 

satellite techniques [Rapp, 1983aI. 

On the other hand, the t e r m  sp is primarily a function of the  

deflection of the vertical as it can be seen from equation (2.34). From 

[Jekeli, 1981, eq. 4.22, with the  sign of the fourth t e r m  corrected] one 

has 

(2.133) 

since W=UtT and U is longitude independent. To examine' the 

magnitude and information content of E , ,  i t  is helpful to consider the 
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following approximations 

- z  -g 
Jh 

8T 
NcosOJh ' 7' 

According t o  the above, equation (2.133) becomes 

1 JU JT 

(2.134) 

(2.135) 

The first t e r m  is (2.135) is approximately equal to 02g /2  (since 

Ba=(z+qz, and gPzrp). With gpz7pz9.8 m/seca  and (=~=10", the 

magnitude of this t e r m  is found to be about 2 pgals, so that such a 

t e r m  can be safely neglected. 

On the other hand, from equation (2.54) one has 

2 [,. 3GM' Jz I;.] a a  + a z r z ]  sinecose 
JO 

and us ing  (2.55) one gets 

Accordingly, equation (2.135) becomes 

z P  ([3Jz[:l2 + ~ ] s i n 9 c o s 9  w a r 3  -) JT 
rJ8 p .  

(2.136) 

(2.137) 

(2.138) 
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Using a nominal value of 6371 km for r one can ve r i fy  numerically that 

3J,(E) + w a r 3  ea 
(2.139) 

Comparing now (2.58a) to (2.138) (in view also of (2.139)), one concludes 

that the effects of Eh and c p  are almost identical both in terms of 

frequency content and magnitude. Area-mean values of zP can thus be 

computed by rescaling the area-mean values of e h ,  Le. 

where 

(2.140) 

(2.141) 

and c; is given by (2.83a) with r = FE i .  

Summarizing, the mathematical model relating area-mean values of 

surface free-air anomalies to potential coefficients, considered in this 

study is 

(2.142) 
k + a,AWo 

where 6gg represents the systematic reductions necessary to be 

applied to the surface mean free-air anomalies and is given by 

(2.143) 
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A step-by-step procedure for the numerical evaluation of the terms in 

(2.142) and (2.143) can be outlined as  follows; (the assumption is made 

in the following that an approximate set of coefficients complete to 

degree and order N,,,, and a set of area-mean values of orthometric 

heights are available). 

(i) Evaluate IC! and IS: by 

and 

I I sin cosmXj i f m * O  2 ICA = ... 
i f m = O  I A A  

[ s i n  mdh sinmij i f m z O  

i f m = O  

2 IS, = 

(2.144) 

(2.145) 

- 
Evaluate IPA,,,. 

relations of Paul (1978). 
Aai of the i j th block. 

This can be done efficiently using the recurrence 

Note that IPb, yields the spherical area 

Evaluate F i  from equations (2.95) through (2.97). From the same 

equations, with Hi 
- = 0, evaluate FEi. 

Evaluate Sgj j  from (2.80) and Ie/,J, I64J from equations (2.111) 
and (2.112). Consequently, the systematic reduction S g S j  to the 

mean anomaly can be evaluated by (2.143). 

If vertical datum inconsistencies are to be parameterized then a 3  

in (2.142) can be evaluated from equation (2.125). 

A setup as  the one described above will enable one to numerically 

evaluate all coefficients necessary for the formation of observation 

equations based on the model (2.142). 
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Concluding this section an important remark should be made about 

equation (2.142). Theoretically, the convergence of the infinite series 

in (2.142) is guaranteed only in the region outside the smallest sphere 

enclosing all the generating masses of the potential (Brillouin sphere). 

However, to now no successful theoretical argument has been given 

proving or disproving the convergence of the series on the earth’s 
surface [Jekeli, 1981, p.41. The intention in this study is to use a 

truncated version of (2.142) (to N,,, ?: 50), for evaluation on the 

earth’s surface. To this  extent the problem of convergence will not be 

addressed here in view also of the numerical results reported by Jekeli 

(1981). 

2.4 The Alternative U s e  of Terrain Corrected Anomalies 

It w a s  proposed by Morite (1966, p. 104) that linear solutions to 

the bvp of Molodensky can be obtained using anomalies reduced to the 

surface of the reference ellipsoid through the free-air gradient, as 

follows 

(2.146) 

where Ag is the surface free-air anomaly and A 8  the downward 

continued anomaly. 

Moritz [ibid, p. 105, equation 2801 has proved that 

(2.147) 

where G,  is the Molodensky correction t e r m  [Heiskanen and Moritz, 

1967, p. 3071. 

For lower degree harmonics one can neglect the term 



as being of the order of h/R. Hence, from (2.147) one obtains 

Ag* = Ag + G1 

48 

(2.148) 

(2.149) 

On the other hand, it is shown by Morita (1966, p. 105, equation 285b) 

that 

G1 = G' - n(AhAg), 2R n=o 
(2.150) 

where 

Ah = h - h, (2.151) 

and h, is a mean elevation of the area in question. G' is a correction 

term associated with the "Pellinen type solutions" to the  bvp of 

Molodensky [ibid, p. 921. Neglecting the t e r m  

(2.152) 

with the s a m e  reasoning as  in (2.148), for lower degree harmonics, one 

has 

A 8  = Ag + G' 

or i n  view of (2.146) 

(2.153) 

(2.154) 

In addition, if the assumption is made that the surface free-air 

anomalies are linearly correlated with elevation, i.e. 
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Ag = a + bh 

49 
(2.155) 

with a,b being approximately constant, then it is proven in [ibid, 

equation 2621 that G' becomes identical to the conventional terrain 

correction tc [Heiskanen and Moritz, 1967, p. 1311. Hence for lower 

degree harmonics and under the assumption (2.155) one has 

Ag* = Ag + tc .  (2.156) 

- 
Accordingly, if terrain corrections tci are available in terms of area 

mean values of the s a m e  blocksize as the anomaly data, one can use 

the values 

(2.157) 

as "observations" in the adjustment, considering these values to refer 

to the surface of the ellipsoid. Of course the systematic reductions 

6gfj have to be applied in this case as well. 



CHAPTER I11 

DATA USED IN THIS STUDY 

3.1 Data Requirements for Surface Gravity Analysis 

Estimation of harmonic coefficients of the earth's gravitational 

potential based on the mathematical formulation presented in Chapter 

XI, requires two types of surface observations; area-mean values of 

free-air gravity anomalies and area-mean values of orthometric heights. 

A s  it was mentioned in the introduction, this study a i m s  to provide 

optimum estimates of the geopotential based on terrestrial measurements 

alone. Accordingly, altimetric observations a s  well as any other type 

of observations obtained from satellite techniques will not be 

considered here. 

A brief description of the fundamental data bases that were used 

in this study is given in the following sections, mainly focusing on 

some of their  characteristics that are important to consider for the 

appropriate use of these data and for accurate interpretation and 

evaluation of the results. 

3.1.1 The June 1986 Gravity D a t a  Base 

The surface free-air anomalies used in this study are taken from 

the "June 1986" data base [Despotakis, 19861, which is the most recent 

update of t h e  OSU gravity data bank. The June 86 anomaly field 

contains 48955 l'xl' surface mean free-air anomalies based on the 

50 
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GRS '67 normal gravity formula [IAG, 19711. 

The compilation and updating of global anomaly fields, as the 

above, is based on the  collection and processing of gravity information 

referring to smaller (regional) areas. Such data subsets ("data 

sources") contain gravity material in various forms, both in terms of 

data type (point or area-mean values at various subdivisions, of 

free-air or Bouger anomalies), as well as  in terms of format (maps, 

tabulated data, magnetic tapes). To obtain from these sources a 

uniform global set of mean free-air anomaly estimates, some kind of 

prediction technique (the term prediction is used here in a broad 

sense) has to be applied to the  data of each source. Depending on the 

nature of the source, the estimation technique varies accordingly, 

ranging from visual estimation performed on maps, to least squares 

collocation performed usually to point data or  mean data of smaller 

subdivisions. The task of obtaining a reliable global anomaly field 

becomes more complicated by the fact that valuable information related 

to the original observations from which a data source has been 

compiled (such as the vertical datum to which the gravity anomalies 

refer or the exact way of computation of normal gravity), is usually 

not provided. The validity and reliability of the gravity anomaly 

estimates is deduced from comparisons with previous estimates 

(wherever possible) or Yndependent" data sources, such a s  satellite 

altimetry derived anomalies (in oceanic areas), or even from the 

experience and intuition of the person performing the compilation. 

Of equal importance w i t h  the anomaly estimate itself, is the estimate 

of its accuracy, which is deduced in most cases in a more or less 

empirical fashion. Although it is not reasonable to claim that the 

anomaly estimates in global anomaly fields are uncorrelated, no global 

field exists a t  present for which an error covariance function is 

defined. For regional and more homogeneous data sources, error 

covariance functions have been developed and tested [Weber and 

Wenzel, 19821. However, the inhomogeneity of the data from which 

global anomaly fields are compiled, as well as  the size of these data 
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bases introduce serious problems on the estimation of global error 

covariance functions. In this study the error covariance matrix 

associated with the June 86 anomaly field will be assumed diagonal. 

Of particular interest is a subset of 5684 values (about 12%) of the 

June 86 field, that consists of l * x l *  anomaly estimates which have been 
derived by means of geophysical correlation (Figure 9). Detailed 

discussion on that estimation technique is given by Wilcox (1966, 1974, 

1978). These anomaly estimates are of inferior quality as  compared to 

observed gravity (Figure 12). The poor quality of these data, in 

conjunction with their geographical distribution (they cover mostly the 

extended areas of USSR and China), creates a quite unfavorable 

environment for the estimation of long wavelength features of the 

gravity field. 

In Table 2 certain statistical quantities referring to the June 86 

field are given, while Figures 8 through 12 illustrate some aspects of 

the geographical distribution and quality of these data. 

Table 2. Statistical Characteristics of the June 1986 Anomaly Field 

No. of anom. 
Mean value 
W S  value 
Min value 
M a x  value 
Wtd. mean 
Wtd. RMS 
Min. s t d .  dev. 
M a x .  s t d .  dev. 
RMS s t d .  dev. 

Northern HemispherelSouthern Hemisphere 
28005 I 20950 
-0.2 
28.1 
-270 
340 

-0.9 
28.5 

1.0 
62 

14.0 

-0.6 
26.6 
-222 

192 
0.4 

26.1 
1.0 
47 

14.6 

G 1 ob a 1 1 y 
48955 

-0.4 
27.5 
-270 
340 

-0.3 
27.5 

1.0 
62 

14.2 
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In the course of this study three particular issues related to the 

gravity data have been reconsidered and examined due to their 

influence on the results; namely 

(i) The exact means of computation of the normal gravity 7 p  (see 

equations (2.67) and (2.69)), which is necessary to define the 
surface free-air anomaly. 

(ii) The conversion of the anomaly data from one reference system 

(e.& GRS '67) to another (e.$. the system defined by the 

constants used in the development of the GEMTl satellite-only 

field [Marsh et al, 19871). 
(iii) The frequency content of the l o x l *  mean anomalies of the June 

86 field. 

(i) 
In section 2.3.1 the definition of the surface free-air anomaly and 

the computational formulas required for rigorous mathematical modeling 

were given in equations (2.67) through (2.76). Before using the June 

86 anomalies it is necessary to examine whether these data comply with 

these requirements. Although for most of the gravity sources the 

relevant information is not provided, judging from the most reliable 

and accurately documented ones (e.g. Source 91 - see Despotakis, 

1986), one has to conclude that the second order vertical gradient of 

the normal gravity is neglected in the definiton of the free-air 

anomaly. Consequently, in this study it will be assumed that the June 

86 field contains area averages of anomalies defined by 

(3.1) 

Probably the terms 7p0 and [2]p0 have not been evaluated as 

prescribed i n  equations (2.69) through (2.76) (for example the term 

is most probably assumed constant, equal t o  0.3086 mgal/m); 

however these approximations w i l l  be neglected. The neglect of 
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1 3  t he  term 5[ah2]a0H2  though, cannot be ignored. 

a value of about 4 mgals in regions such a s  the Himalayas (H 7000m), 

and its effect is certainly non-neglible in view also of other more 

refined corrections (e.g. Eh). To examine its effect the following 

computations were performed: 

This  term can reach 

Evaluate a global set  (64800 values) of the quantity 

The evaluation of Yao is performed on the mid latitude of each 

block. 

Perform a harmonic analysis of the above global set, to define a 

corresponding set of harmonic coefficients. 

From these harmonic coefficients the implied undulation corrections 

6Nh2 can be evaluated in terms of either point or  area-mean 

values. Figure 13 illustrates the corrections 6Nhn evaluated on a 

5.~5’ grid from a harmonic set corresponding to 6 g h z  which is 

complete up  to N,,, = 36 (These corrections are to be added to f ’ ? ~  

undulation obtained b y  omitting 6gh 2 ) .  

90 

60 

0 

-30 

-90 

Figure 13. Undulation Correction 6Nhz ~ ~ ~ ~ - j  on a ~ o x f j O  cr. id 

(Contour Interval i s  20 cm). 
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As it can be seen, the effect reaches a maximum (absolute) of about 

-1.80 m in the Himalayas. The RMS magnitude of 6gh2 (up to N,,, = 
36) is 0.12 mgals, while the RMS 6Nhz is 0.22 m. In view of its 
systematic character and its magnitude (compare with &h) ,  it is clear 

that such a t e r m  has to be included in the modeling. 

(ii) 
The normal equations obtained from the analysis of the surface 

gravity data are to be combined with the corresponding normal 

equations from the analysis of the satellite data. For that reason, a 

common reference system has to be adopted in the analysis of both 

data sources. In this study such a system will be defined by the 

"TOPEX constants" [Marsh et al, 1987 Section 4.1.41, Le. 

I a = 6378137. m 
l/f = 298.257 
GM = 3986004.36~10~ m3/sec2 
w = 7.292115~10-~ rad/sec . 

(3.3) 

To convert the l * x l *  anomalies of the June 86 field, from the  GRS '67 
to the TOPEX system, the following formulas are used 

where 

and the coefficients do, d2, d, are given by [Moritz, 19841 

- 
7 e G R S 6 7  7 e T O P E X  

" G R S 6 7  a ' T O P E X  

a 4 G R S 6 7  a 4 T O P E X  

do = 
- d, = 

d, = - 

and 

(3.4) 

(3.5) 



1 
2 a , = - e Z + k  

3 1 a4 = - e4 + - e2k 
8 2 

with 

bY k = - - 1 .  
a Y  e 

In terms of numerical values one has 

I = 9.7803252176 m/sec2 

do = -0.6762 mgals 
d2 = -0.0761 mgals/rad2 
d, = 0.0007 mgals/rad4 . 

7eTOPEX 
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(3.7) 

(3.9) 

Directly related to the  reference s y s t e m  used, is t h e  definition of t h e  

even degree  zonals C T P , ~  of t h e  d i s turb ing  potential. The following are 

defined for  th i s  study: 

with [Moritz, 19841 

and 

J 2 = - [ 1 - - - )  ez 2 me' 
3 15 Qo - 

(3.10) 

(3.11) 

(3.12) 

The numerical values implied for J 2 ,  J4, J6 using t h e  TOPEX constants 

are 

I J2 = 0.1082631478~10-~ 
54 = -0.237091961~10-~ 
56 = 0.608351~10-~ 

(3.13) 



62 

The significant digits given here for the zonal coefficients of the 

normal potential do not imply any truncation of these values. Here the 

constants given in (3.3), exact to the given digits w e r e  used to define 

the reference system, along with the above equations. The derived 

values of Jz, J4, Jb w e r e  transmitted to NASA/GSFC along with the 

normal equation sets. There, prior to the combination solutions the 
right s ide  vectors of all normal equation subsets w e r e  translated in 

order to refer to a unique reference sys tem.  

It should be mentioned here, that in the course of this study 

various other sets of constants (such as the OSU 1986 [Rapp and CruzJ 

1986a, p. 41 or the GRS '80 [Moritz, 19841) have been used for the 

purpose of various experiments (simulated data tests etc). Although 

these tests could have been performed equally well using t h e  TOPEX 

constants and their results are hardly affected by the change of the 

reference values, to avoid confusion the reference values used for each 

experiment discussed in the sequel are explicitly stated. 

(iii) 

As it will be discussed in more detail in the next chapter, in the 

harmonic analysis of an incomplete set of data on the surface of the 

earth, it is of critical importance that the frequency content of the 

signal to be analysed be known, at least to an approximate degree. 

The frequency content of each 1 . ~ 1 ~  mean anomaly e s t i m a t e  is primarily 

a function of the number and distribution of the more detailed data 

inside the block, from which the lox lo  mean value has been estimated, 

a s  well as, of the estimation method (viewed a s  a low-pass filter) used 

to define the l -x lo  mean value. To illustrate the problem, consider the 

signal being continuously known over the  surface of the earth, which 

for the purpose of this discussion can be viewed as a sphere. Then it 

would be possible to design an averaging operator (low pass filter) 

with such response (transfer function), so that any desired band of 

frequencies would be eliminated from the mean values. However, in 

fact the type and distribution of detailed data inside each l o x l o  block 

varies, and so does the prediction techniques used between different 
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Hence the frequency content of each area-mean value in data sources. 

a global anomaly field should not be expected to be the same. 

The consequences of that problem have been experienced in the 

current study as will be seen in Section 5.2.5. 

3.1.2 The M e a n  Elevation Data 

In the course of this investigation three elevation data bases have 

been examined: 

(i) OCT85.MELEV 

(ii) TUG86, and 

(iii) TUG87 

(i) OCT85.MELEV 

This digital terrain model (DTM) is a global complete set (64800 

values) of l ' x l "  mean elevations and has been compiled based on the 

DMA 79 model, after gross error corrections have been applied by R.H. 

Rapp. This set accompanies the June 86 gravity data [Despotakis, 

19861, since at that t i m e  it was considered the most up to date 

elevation data base. 

This set was  not used in any of the computations involved in this 

study. 

(ii) TUG86 

This set was  compiled by H. Siinkel at the Technical University of 

Graz and became available at OSU on July 11, 1986. It is also a 

complete set of 1.~1- m e a n  elevations. I t  has been compiled based on 

the  OCT85,MELEV for the continental areas and the 5'x5'  SYNBAPS 
bathymetric data for the oceans. This set was  used in almost all of 

the  preliminary investigations in this study. 

(iii) TUG87 

This set has the same origin and author as the previous one and 

became available at OSU on July 8, 1987. I t  has been compiled based 
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on two DTMs provided by the National Geophysical Data Center in 

Boulder, the ETOP05 and the DBDB5 (formerly called SYNBAPS). Details 

on the set up and characteristics of the TUG87 are given by Wieser 

(1987). A t  present TUG87 (which became available in the form of 5'x5', 

30'x30' and l 'xl '  mean values), is considered the most reliable source 

of elevation information. As soon as it became available, it has 

replaced TUG86 in the computations made for this study. 

In Figure 14 the locations of the 5911 l 'xl. blocks where the 

absolute difference between the TUG87 and the OCT85.MELEV elevation 

exceeds 1000 m are shown. 

I t  should be mentioned here that the gravity anomaly and elevation 

data used, should be consistent (see equation (2.69)). However, in the 

absence of elevation information related to the gravity data sources, 

one can only use the most reliable elevation data available with 

reservations concerning their compatibility with the gravity data. 

180 200 220 2uo 260 2130 300 320 3UO o 20 uo 60 130 loo 120 140 i6c  i a o  

Figure 14. Locations of the 5911 l ' x l "  Blocks Where I f i i j T U G e 7  - 
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CHAPTER I V  

ESTIMATION OF HARMONIC COEFFICIENTS OF THE GEOPOTENTIAL 

4.1 Combination Solutions 

The complementary spectral sensitivity of satellite versus terrestrial 

observable8 with reapect to the  gravity field, necessitates the 

combination of both data sources in order to obtain optimum estimates 

for those harmonic coefficients tha t  correspond to frequencies 

recoverable by both techniques. The fact that satellite observations, 

such as ranges, range rates etc., can be safely assumed uncorrelated 

with terrestrial measurements, such as  gravity anomalies, permits the 

combination solutions to be performed in a sequential mode. First two 

independent estimates of a potential coefficient set are obtained, one 

from the analysis of satellite data and one from surface gravity data. 

Then, based on these estimates and their associated covariance matrices 

an adjustment can be performed in order to yield a unique (with 

respect to the optimization principle adopted) set of coefficient 

estimates. 

Estimates of harmonic coefficients from orbital analyses are obtained 

from general dynamical solutions. In these solutions several subsets of 

observations (different satellites and data types) are used, and the 

potential coefficients constitute only a subset of the  total set of 

parameters being estimated. This eet also includes station coordinates, 

earth orientation, tidal and orbital parameters. 

The modeling and estimation techniques used is such solutions will 

not be discussed here, since these topics are beyond the scope of the 

65 
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present study. Elaborate discussions on related topics can be found in 

h u l a  (1966a), Cappellari et al. (1976), Martin et al. (1980) or Marsh et 

al. (1987). For the purposes of this discussion i t  suffices to consider 

a simplified, schematic description of the adjustment process used in 

satellite solutions. 

L e t  Xe denote the set of potential coefficient parameters, while Ya 
the set of all other parameters (orbit, earth orientation, tides). Then, 

linearization of the functional relations of the satellite observables with 

respect to Xa and Ye leads to observation equations of the form (see 

also Appendix B for the notation) 

a a 

v, = BY + A,X, + L, 

where 

0 b L, = L, - L, 

(4.1) 

and Lz denotes the approximate values of the observables computed 

from the approximate values Xo and Yo of the parameters. Matrices A, 

and B contain the partial derivatives of the observables with respect 

to Xa and Ye (evaluated at Xo and Yo). In principle, the spectrum of 

the gravitational field extends to infinity so that matrix A, should have 

an infinite number of columns. However, at satellite altitudes, only the 

lower degree harmonics perturb the orbits t o  the extent that these 

perturbations can be observed and separated from measurement noise. 

Therefore, for satellite applications, it is justifiable to truncate the 

spectrum of the gravitational field to a finite degree. 

If P, denotes the weight matrix associated with L$ then 

minimization of the weighted norm of the residuals vHP,v, under the 

condition (4.1) leads to the normal equation system 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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(4.3) 

Elimination of the ? unknowns from the system (4.3) will result in a 

system 

a 

N,X, = Us (4.4) 

where 

-1  

N, = [AZP,A, - (A~PsB)(BTP,B) (BTP,A,)] (4.5) 

(4.6) 

A modification of the above procedure w a s  used in some GEM models 

[Lerch et al., 19793. The modification consists of the use of a-priori 

information for the geopotential coefficients in the form of an a-priori 

weight matrix P, which is diagonal with elements equal to the reciprocal 

degree variances per coefficient as implied by a specified degree 

variance model (hula 's  rule of 10'5/n2). This scheme corresponds to 

the case of "weighted parameters" [Uotila, 1986, Section 5.51 where the 

target function to be minimized is not viP,v, but 

(4.7) 
T v,~,v,  + vT,~,v, = min 

with v, denoting the residual associated with the "observed" parameters 

L, (see also Appendix B). The effect of this modification in  the 

formulation given above is that the submatrix AiPeAs of the normals has 

to be replaced by The advantage of this procedure is 

that (A;P,A, t P,) is better conditioned than AzP,A,, a fact which 

improves the estimability of certain (higher degree) coefficients which 

are highly correlated [Lerch et al, 19791. 

of t h i s  procedure the observed values of the parameters, L,, are assumed 

equal t o  zero, so that v, becomes identical t o  X, [Marsh et  a l . ,  1987, 

(AiP,A, t P,). 

In this particular application 

A 
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Section 8.13. 

In any case, relevant to  the following discussion is that a set of 

normal equations as (4.4) can be obtained from the orbital analysis. 

If a corresponding set 

is formed based on terrestrial gravity information, then, in principle, 

the combination solution can be obtained by 

Of course, for (4.9) to be valid the same approximate values have to be 

used in both the satellite and terrestrial adjustments. Also, questions 

of relative weighting between N, and NT may have to be considered. 

However, these issues do not change the general principle and strategy 

of the combination solution as  presented above. In the remaining part 

of this  chapter various aspects related to the formation and structure of 

the normal system (4.8) are examined. 

4.2 Estimation of Potential Coefficients from 

The problem of estimating a set of 

Surface G r a v i t y  

I - 
harmonic coefficients of the 

I geopotenthl from surface gravity data is formulated as  follows: 

Given: 

I 
(a) A set of equi-angular area-mean values of surface free-air anomalies 

(June 1986 field), which constitutes a subset of the Nx2N (N = r/AX) 
set that covers the entire area of the ellipsoid. 
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(b) A diagonal CLb matrix containing estimates of the error variances of 

the above data. 

(c) A complete (Nx2N) set of mean orthometric heights. 

From these data, and based on the mathematical model (2.142) and the 

systematic reductions 6gha and 6gr as  defined in equations (3.2) and 

(3.5)J one seeks to estimate a set of harmonic coefficients of the 
geopotential, complete to degree and order N,,,, where N,,, < N. For 

reasons that will be explained in the next section, it is assumed that one 

can evaluate the contribution to each data value of all harmonics of 

degree n > N,,,. Hence, define 

(4.10) 
so that one can write (see also equation (2.142)) 

where 

Since the vertical datum inconsistencies have not been modeled in the 

solutions made for this Study, the  term AW&i and the superscript k in 

the above equations have been omitted. 

Equation (4.11) is identified as  being of the general form 

La = F(Xa) 

where 

a d n N,,,, m 6 n 
d = 0 , l  x = [... c,, . . . I  

(4.13) 

(4.14) 



with 

while  the observations Lb are considered t o  be 
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(4.15) 

(4.16) 

The function F, as it can be readily seen from (4.11) is linear with 

respect to the parameters Xa. Hence following the linear observation 

equation8 adjustment model (Uotila, 1986, Section 3.2.11, and assuming 

approximate values equal to zero, one has a set of observation equations 

v = AXa - Lb (4.17) 

Hence, with 

(4.18) a -1 
p = @O z L b  

minimization of the weighted norm of the residuals under condition (4.17) 

yields the normal equation system 

(A~PA);' = A ~ P L ~  

and thus the least squares estimate of Xa is given by 

-1 T ia = (A~PA) A P L ~  

I 

while the covariance matrix of Xa is given by 

1; = ~:(A~PA)-~ 

(4.19) 

(4.20) 

(4.21) 

I 
I 
I 
I 
I 
I 
I 
1 
f 
I 
1 
1 
I 
I 
I 
I 
1 
I 
I 



U 
I 
1 
1 
I 
1 
I 
I 
E 
1 
I 
1 
1 
I 
I 
I 
I 
I 
I 

71 

In terms of a geometric interpretation, it is we l l  known that, if an  inner 

product is defined over the column space of the design matrix A (A 

must have full column rank) by 

<x,y>p = xTPy 

then, the estimate 

column space of A. 

The estimator 

unbiased es t imator  

(4.22) 

above, represents the projection of Lb onto the 

E4 8 = (ATPA)''ATP becomes also the best linear 

if the noise n of the observations has zero mean 

(E{n}=O) and CLb is defined by 

(4.23) 

In addition if the probability distribution of n is Gaussian, then Els 
represents the maximum likelihood estimator as  well [Colombo, 19811. 

4.2.1 Structure and Characteriatica of the Normal  Equations 

Although the presentation given in the  previous section completely 

defines the adjustment procedure used in this  study, i t  is useful to 

re-examine some of the equations given before when these are written in 

explicit analytical form rather than in compact matrix notation. Such 

considerations are not only useful because they provide insight on the 

structure and characteristics of the normal system (4.19), but, become 

necessary also since the  large size of certain matrices involved in the 

adjustment process prohibits the direct use of matrix operations, 

Analytical expressions for the elements of the matrices of the normal 

system can be derived in a compact form useful for further 

interpretation, only if the effect of data gaps (locations where no 

observation is available) is considered in an indirect manner. In the 
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following derivations an empty block is considered to contain an 

undefined data value with weight equal to zero. Such treatment of data 

gaps enables a compact and patterned formulation, efficient for 

numerical implementation, and yields identical results with the straight 

forward approach. I t  should be emphasized that this is to be 

interpreted only as a tool to simplify derivations and computational 

algorithms. It has no impact on the positive definiteness of the weight 

matrix of the observations or the degrees of freedom of the adjustment. 

From (4.11) it can be seen that the elements of the design matrix A 

are given by 

where 

(4.24) 

(4.25) 

For an arbitrary element of the normal matrix N = ATPA corresponding 

to the unknowns C$, and CeS one has (since P is assumed diagonal) 

(4.26) 

or 

(4.27) 
For a diagonal element corresponding t o  C& one has 
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while the corresponding element of U = ATPLb is given by 

the 

no 

Consider now an idealized case where the observations are given on 

surface of a sphere of radius r = a, the Nx2N data grid is full (i.e. 

data gaps exist), and all observations have the same standard 

deviation u, so that  P = U-~I.  Without loss of generality further assume 

u = 1 to simplify the following expressions, In all subsequent discussion 

it is assumed that the coefficients being estimated, form a complete set 

up to degree and order N,,, where N,,, is always smaller than N = 
n/AA, the Nyquist frequency implied by the data sampling. In such case 

the previous equations become 

and 

(4.30) 

(4.31) 

(4.32) 

(4.33) 
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where 

GM y = -  
az (4.34) 

However, it is true that  the orthogonality of the sine and cosine 

functions is maintained in the interval [0,2n) when discrete mean values 

of these functions are regularly sampled, provided that the Nyquist 

frequency is not exceeded. Hence, 

ZN-1 
1 IC~IC:  = o 

j = 0  

1 1  ZN-1 
IS,IS, = 0 

j = o  

i f m s s < N  

i f m * s < N  (4.35) 

ZN-1 
I C ~ I S !  = o 

j = o  
for all m and all s J 

Equations (4.35) can be proven easily if one recognizes that  [Colombo, 

1981, p. 4, equation 1.71 

where 

if mtO 1 A: if m=O [ ;osIAA-l if mtO 

if m=O 

sinmAA 
A(m) = 

B(m) = 

(4.36) 

(4.37) 

and makes use of the relationships [ibid, p. 10, equation 1.20-a] 



2 N - 1  I: cosmjAhcospjAh = 0 if m * p < N 
j = o  

aN-1 I: sinmjAXsinpjAh = 0 i f  m f p < N 
j = o  

2N-1  
I: cosmjAhsinpjAA = 0 for a l l  m and a l l  p 

j = o  
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(4.38) 

In addition the equatorial symmetry of the grid (Aai = A a ~ - i - ~ )  in 

conjunction with the parity properties of the integrated values of the 

associated Legendre functions, namely 

- 1  N - i - 1  IP,, = (-l)n-mIFnm 

yield 

IFArnIFi5 = o  if n-r is odd. 
iz0 Aut2 

(4.39) 

(4.40) 

Hence, from (4.31), (4.35) and (4.40) follows that (see also [Colombo, 1981, 

equation 2.851) 

d * B , m + s  

n - r is odd 
[N] d p = 0 if [ or 

CnmCr s 
(4.41) 

while if neither of the  conditions in (4.41) apply then [N]CfmC(!, may or 

may not be zero. 

Since an element of the normal matrix N also represents the inner 

product of the corresponding columns of the design matrix A and since 

these columns consist of successions of the area averages of the surface 

spherical harmonics (see equation (4.30)), the relation (4.41) implies that: 

(a) The area averages of the surface spherical harmonics do not 

constitute an orthogonal set of base functions on the sphere, even 

if the sampling is regular and the Nyquist frequency is not 
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exceeded. The non-orthogonality (or skewness) of this set of base 

functions implies that if a function (such a s  the gravity anomaly) 

defined by discrete, regular, area-mean samples of it (such a s  the 

d g i j ) ,  is spectrally decomposed with respect to the above set of 

base functions, using quadrature formulas (see Section 4.2.2), then, 

synthesis of these spectral components will fail to recover the 
sampled values. The discrepancies between the original and the 
synthesized samples is due to the omission of the existing 

correlations between the base functions when quadrature formulas 

are used (see equation (4.47)). These correlations arise from the 

use of a finite sampling interval and occur not only in the case of 

area-mean samples (as stressed by Mainville (1986, p. 105)) but also 

in the case of regular, point value samples as  it is formally shown 

by Colombo (1981, p. 53). 

(b) Since the normal matrix N is not diagonal, the estimated coefficients 
from a least squares adjustment are correlated (even if the sampling 

is regular and the Nyquist frequency is not exceeded). Hence, if a 

complete set of coefficients up to N,,, is estimated from a noiseless 

signal (simulated data) containing frequencies beyond N,,,, then the 

estimated coefficients will be distorted with respect to the "true" 

ones. This effect is called aliasing. However, it should be 

emphasized here that the cause of it is the finite block size which 

destroys the orthogonality of the surface harmonics and the 

exceeding of the Nyquist frequency by the set of coefficients being 

estimated. In Section 5.2.4 the results from a number of 

experiments performed in order to illustrate these aspects are 

presented. 

W e  should note also that the conclusions drawn above are valid not 

only for the sphere, but in general for any surface of revolution 

symmetrical about the "equator" (e.g. an ellipsoid of revolution), 

provided that the  data grid is symmetrical with respect to the equator 

and Ah is constant. Also the use of a unit weight matrix is not 

necessary. The s a m e  conclusions could have been drawn using weights 

for the anomaly data that are longitude independent and symmetric with 
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respect to the equator, i.e. pi - - PN--1-1' 

Proceeding from the idealized situation examined above to the "real 

world" case corresponding to the problem at hand, it is realized that 

the patterned structure of the normals will be destroyed once data 

gaps, unequal weights and da ta  referring to the earth's surface are 

introduced. The dominant factor affecting the structure of the normals 
is the data gaps. Their arbitrary locations make it practically 

impossible to predict their effect on the elements of the  normal system. 

If a rigorous adjustment procedure is to be used then the entire normal 

matrix (upper triangular part) has to be formed. Otherwise, if an 

approximate solution is sought, considering only a limited bandwidth of 

the normal matrix, a particular ordering of the  unknowns has to be used 

so that the largest (in absolute sense) off-diagonal elements can be 

brought closest to the diagonal. Such ordering may approximately be 

determined by examining the pattern of the off-diagonal elements from 

teat solutions [Wenzel, 19851. To illustrate the effect of the ordering of 

the coefficients in conjunction with the data gaps, on the  structure of 

the normal matrix, the following examples were performed. We 

considered six different ordering patterns of the unknown coefficients, 

as  schematically shown on Table 3, For each particular ordering pattern 

two sets of normal equations were  formed, both referring to an 

expansion up to N,,, z 12. In both casea t h e  data were assumed to 

refer to the surface of the reference ellipsoid and to have the s a m e  

accuracy (P=I). However, the first set of normals is formed from data 

that are assumed to occupy the 48955 locations of Figure 8, while the  

second from data assumed to occupy the 43271 locations of Figure 10, 

From these normal matrices the corresponding correlation matrices were  

formed. 

In Figure 15 the structure of these correlation ma t r i ces  for two 

particular ordering patterns is illustrated, for each case of data 

coverage. Each "x" denotes a correlation coefficient that is larger than 

or equal (in absolute value) to 10%. The number of such values in 

cases (a) and (c) is 1569 while in cases (b)  and (d) is 3724. The 
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Table 3. Ordering Patterns for the Unknown Coefficients 

OR - 
T T  I 

coo 
c20 
c21 
c22 
C30 
C3 1 
C32 
c33 
s21 
s22 
S31 
S32 
s33 

- 

- 

J.J. - coo 
c20 
c21 
c22 
s21 
s22 
C30 
C31 
C32 
c33 
S31 
S32 
s33 - 

- 
{RING 
I11 
coo 
c20 
c21 
s21 
c22 
s22 
C30 
C3 1 
S31 
C32 
S32 
c33 
s33 

- 
'ATTE 
IV 
coo 
c20 
C30 
c21 
C31 
c22 
C32 
c33 
s21 
S31 
s22 
S32 
s33 

- L v 
coo 
c20 
C30 
c21 
C3 1 
s21 
S3 1 
c22 
C32 
s22 
S32 
c33 
s33 

- - VI 
coo 
c20 
C30 
c21 
s21 
C31 
S31 
c22 
s22 
C32 
S32 
c33 
s33 

- 

advantage of ordering V over ordering I in case of a solution 

considering only a limited bandwidth of the normals is rather profound. 

Pattern V differs from the pattern discussed by Colombo (1981, p. 53) 

only by the fact that the parity of n-m is not taken into account in the 

ordering of Cf,. 

In our case the particular ordering used is really irrelevant since a 

rigorous solution considering the whole normal m a t r i x  will be pursued. 

For consistency purposes pattern I is used in all solutions here, which 

is the  s a m e  with the ordering used in the formation of normals from 

satellite observations. 

Comparing the correlation matrices of Figure 15 by columns one 

recognizes that the number and locations of the existing data (48955) is 

more or less sufficient to assure diagonal dominance of the normals. 

However, the exclusion of the geophysically predicted data results in 

practically full normal matrices. This fact has an  important consequence 

on the computation of anomaly degree variances from the coefficients 

obtained from solutions where the geophysically predicted data ore 

excluded, as will be seen in Section 5.3.4. It  must be emphasized that 
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(a) Ordering I 
48955 Observations 

(b)  Ordering I 
43271 Observations 

(c) Ordering V 

48955 Observations 
(d) Ordering V 

43271 Observations 

Figure 15. Structure of Correlation Matrices. 
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the structure of the  normals is affected not only by the number of data 

points excluded; the location of the resulting empty blocks is also 

important. 

Finally, it should be mentioned that the above results pertain to the 

case of data of the s a m e  accuracy, and thus reflect the influence of the 

geometry in the structure of the normals. However, in the more 

realistic case where  the accuracy of the data varies, the structure of 

the normals will be also influenced by the variation of the weight from 

one measurement to another. 

4.2.2 The Least Squares Adjustment as Compared to Quadrature Formulas 

Numerical quadrature formulas (Le. discretized couterparts of the 

orthogonality relations) have been proposed by Kaula ( 196613) and 

extensively studied and used by Rapp (1969, 1977, 1981, 1984, 1986, 

1986a,b) for the estimation of potential coefficients from discrete mean 

values of gravity anomalies. A comparison of this technique to the least 

squares adjustment procedure was  already made at the "early days" of 

global gravity modeling [Rapp, 19691. It is considered appropriate here 

to briefly present some important aspects of such a comparison in a 

slightly different way. 

Consider that a complete (Nx2N) set of anomaly data dgi is defined 

A set of coefficients Cf,,, on the surface of a sphere of radius r = a. 

which would minimize the quantity 

is sought. 
For an arbitrary coefficient CFS the condition 

- -  a+ - 0  (4.43) 
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yields 

The condition 

N-1 2N-1- 
i f  d f p or  n * r or m f s 

i = o  j=o 

is imposed so that  (4.44) becomes 

(4.45) 

(4.46) 

Condition (4.45) (in integral form) is automatically fulfilled only if the 

sampling is continuous (infinitely sma l l  sampling interval). Hence, for 

surface harmonics of the same degree and order, one should expect that 

departures of their inner products from zero would decrease with 

decreasing sampling interval. 

N o t e  that in view of (4.35) and (4.40) the condition (4.45) reduces to 

N-1 2N-1- r j -  i j  c c e m e m  = o s  if n-r even. 
t = o  j=o 

If further the condition that 

is imposed then from (4.46) one gets 

(4.47) 

(4.48) 

(4.49) 
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which ia recognized to be identical to t h e  quadrature formulas (without 

quadrature weights 4,) used for the determination of potential 

coefficients from discrete mean values. Accordingly, quadrature 

formulas represent a least squares solution provided that: 

(i) A complete (Nx2N) set of gravity data dgi j is defined on a sphere. 
(ii) The weight function for these data is defined by P I J  = cAal with c 

(iii) Conditions (4.47) and (4.48) are imposed on the adjustment. 

being any positive constant. 

Condition (4.47) amounts to setting all off-diagonal elements of the 

normal matrix N equal to zero, while (4.48) enforces the diagonal 

elements to take values 

(4.50) 

Since these conditions are externally imposed on the system, the 

quadrature formulas will fail to recover a set of coefficients Cf,,, from 

synthetic data d g f j  that have been computed from these coefficients 

[ ~ P P ,  19863. 

Colombo (1981) has introduced "quadrature weights" q j  and has 

modified equation (4.49) to 

(4.51) 

He has also investigated numerically the definition of q j  in an optimum 

manner (ibid, p. 76), so that the estimator of the harmonic coefficients 

defined in (4.51) minimizes the sum of squares of the coefficient errors. 

To illustrate these aspects the following numerical tests have been 

performed. 

W e  started with the Rapp (1981) potential coefficient set complete 

from Nmrn = 2 to N,,, = 36, and computed a complete set (64800 values) 

of l*xlg mean anomalies on a sphere of radius Rz6378137 m, using the  
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SSYNTH program of Colombo (ibid, p. 101). From these synthetic data 

(zero noise) we have attempted to recover the potential coefficients 

using the following procedures: 

(1) Least squares adjustment with weight matrix P = I 

(2) Least squares adjustment with weights p i j  = bar 

(3) By applying equation (4.46) 

(4) By applying equation (4.49), Le. using quadrature formulas without 

optimum quadrature weights. 

In all cases the entire set of anomalies w a s  used as  input. The 

recovered coefficients from each procedure were then compared to the 

original ones. The criteria used in the comparisons were  the percentage 

difference by degree and cumulatively, and the anomaly and undulation 

differences by degree and cumulatively (see also Section 5.2.3 for the 

definition of these quantities). In Table 4 the results of these 

comparisons are given. Along with the results of the four methods 

above, for certain degrees, the results of a corresponding comparison 

performed by Rapp (1986, p. 378, Table 2) where the recovery of 

coefficients was attempted using equation (4.51) with qa defined by 

Colombo (1981, p. 76) are listed under "Method 5". 

Table 4. Comparison of Input and Output Potential Coefficient Sets 

to 30 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .01 

.oo .01 

.oo .01 1 .oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 1 .oo .oo 

- 
P . 00 . 00 . 00 . 00 . 00 
.Ol 
.Ol 
.Ol 

. 00 

- 

- 

- 
6N 
.10 
.10 
.10 
.10 
.10 
.10 
.10 
.10 

1.00 

- 

- 

.oo .01 .20 .oo .01 

.OO .02 .50 .OO 

.OO I .05 I .60 I .01 I .24 *091 .10 I .OO I .06 
.40 
.50 
.50 
.70 
.70 

.30 - 

.01 .47 I .02 .20 

Note: Units of 6 N  are cm; units of 6g are mgals; unit8 of P is 4: 
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The numerical results shown above merely confirm the conclusions that 

can be drawn from the  theory, i.e. 

(i) The least squares adjustment procedure is able to recover exactly 

the original coefficients; the small percentage differences at degrees 

24, 30 and 36 are to be attributed to numerical noise. 

(ii) In the case of simulated data (zero noise) the least squares 
solution is independent of the selection of the weight matrix P. 
This is expected since in such cases all residuals become identically 

zero, so that vTPv reaches its absolute minimum (vTPv is a 

quadratic form), regardless of the selection of P, In case of real 

data, of course, the selection of P influences the final result (we 

do not consider here an overall scaling of P which does not affect 

the least squares solution but only its covariance matrix). 

(iii) The quadrature formulas, a s  expected, fail to recover the original 

coefficients. The discrepancies found in method (3) indicate t h e  

effect of condition (4.47), while comparing the results of (3) and 

(4)J one can see the additional effect of imposing condition (4.48). 

A comparison of the results of methods (3) and (5) reveals that 

the introduction of qa as  defined in [Colombo, 1981, p. 761, almost 

compensates the effect of (4.48). However, as  expected, the 

omission of the terms 

with n-r even, implied by (4.47) cannot be offset, by the use of 

quadrature weights. Reversing the argument here, we can view 

equation (4.46) as an alternative way of defining the quadrature 

formulas. Such a definition will certainly not relieve one from the 

distortions of the spectrum caused by the enforcement of 

condition (4.47)J but a t  least i t  will not introduce the additional 

distortions caused by (4.48) which is not needed for the 

development of equation (4.46). Note that, for computational 

purposes, the evaluation of the t e r m s  
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appearing in (4.46) is required. Although it is certainly more 

demanding than the  evaluation of qe, it only depends on the 

blocksize and the maximum degree of the expansion, so that, it can 
be performed once with its results stored and used repeatedly in 

subsequent applications. 

Finally, to obtain a quantitative feeling for the effect of 

condition (4.47), we have formed a set of normals corresponding to 

an expansion up to N,,, = 12 from a global set of l 'x l"  data 

assumed to refer to the surface of the reference ellipsoid. From 

this normal matrix the corresponding correlation m a t r i x  was then 

computed. The maximum (absolute) correlation was found to be 

48% referring to cfol0 and c f z , o .  

Let  u s  now return to the problem of the combination solution. W e  

assume that a complete set (Nx2N values) of gravity anomalies are 

defined on the surface of a sphere. These data now contain noiae and 

are of varying accuracy. In addition a set of potential coefficient 

estimates is given, obtained from the analysis of satellite observations. 

This set is accompanied by its covariance matrix. The combination 

solution can be carried out in two ways which, following Rapp's (1986) 

notation will be denoted as: 

Method A: The estimates of potential coefficients from terrestrial data 

are obtained from quadrature formulas. 

Method B: The estimates of potential coefficients from terrestrial data 

are obtained from a least squares adjustment. 

It is formally shown in Appendix B that in both cases the satellite 

information enters the combination solution in the s a m e  manner (compare 

equations B.13 and B.33). Hence, any differences in the  final result of 

these methods has to be attributed to the different ways of obtaining 

the terrestrial estimates of the coefficients. These differences will be 
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due to: 

(i) The different minimization principle used in the least squares 

adjustment and the quadrature formulas. The minimazation principle 

in t h e  least squares adjustment uses a weight function pi = c/ai J '  

where ui j a  is the variance of each observation and c is any positive 

constant, while in the quadrature formulas pi  j cdai. Accordingly 
quadrature formulas will yield coefficients that tend to reproduce 

the data regardless of their accuracy variations. 

(ii) The introduction of the conditions (4.47) and (4.48) in the case of 

quadrature formulas. Since these conditons are not fulfilled by 

area-mean samples of finite blocksize they will distort the spectrum 

of the field obtained from the terrestrial data analysis. 

Unfortunately, t he  only numerical comparison of the results obtained 

from the two combination methods, given the same input data, was  

performed by Rapp (1969) when the gravity data available were much 

fewer  and less accurate as  compared to the data available now. It 

would be of great interest to repeat such a comparison, based on more 

complete data and more refined modeling techniques. 



CHAPTER V 

NUMERICAL RESULTS AND COMPARISONS 

5.1 The Computational Task - Organization of the Numerical Analysis 

Based on the mathematical modeling and the estimation method 

presented in Chapters I1 and IV respectively, and using the data 

described in Chapter 111, this study a i m s  to accomplish the following 

computational goal: 

Form a set of normal equations corresponding to a low degree 

(<  50) harmonic expansion of the geopotential, in an optimum 

manner. 

This set is then to be combined with the corresponding normal 

equations obtained from satellite data analysis at  NASA (Goddard Space 

Flight Center) for the development of an optimum global gravity model 

to be used for the TOPEX/POSEIDON mission [Marsh et  al, 19871. 

In t e r m s  of the notation used in Chapter IV, the end product of 

this work consists of the matrix NT and the vector UT appearing in 

equation (4.8). Obviously, in this analysis we have not restricted 

ourselves to the formation of the normal equations, but, for each set of 

normals formed, the adjustment of the terrestrial data was  completed 

by evaluating the adjusted coefficients iT, the residuals, a s  well as the 

associated statistics ( v ~ P v ,  xi, etc.), These information are essential 

for comparison purposes, in order to validate our results, identify 

87 
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potential problems and investigate alternative ways of facing these 

problems. On the other hand, validation of our results cannot be 

considered complete unless the quality of the final result of the 

combination solution is also examined, by performing various 

comparisons (satellite orbit fits, Doppler undulation comparisons etc.). 

The computational effort involved in this study can be roughly 

divided into four parts: 

(i) Software Development 

The necessary software to perform the adjustment of the surface 

gravity data has been developed and thoroughly tested on the 

IBM-3081 a t  the Ohio State University. 

By far, the m o s t  demanding part of the calculation (both in t e r m s  

of storage and t ime) ,  is the formation of the matrix NT and the vector 

UT. For a scalar processor it becomes practically impossible to form 

the normal system for degrees of expansion greater than about 20, 

even if high speed large machines, such as the  IBM-3081 are to be 

used. For the computations to become feasible the use of a vector 

processor is necessary. All the normal equation sets discussed in the 

following were formed on the CRAY X-MP/48 at the Pittsburgh 

Supercomputing Center (PSC), The software developed was  optimized 

in order to take maximum advantage of vectorization on t h e  CRAY. In 

Table 5 CPU t i m e s  related to the performance of the software on the 

CRAY are given, for various degrees of expansion (NmaX). For a 

solution to N,,, = 6 the formation of the normals on the IBM-3081 takes 

181.71 seconds. Hence, a s  it can be seen from Table 5 ,  a speedup of 

about 60 w a s  achieved by using the CRAY. I t  was  estimated that the 

formation of normals up to N,,, = 50, which takes less than 2.5 CPU 

hours on the CRAY, would have taken more than 7 CPU days on t h e  

IBM-3081, 
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Table 5. CPU Times for the CRAY X-MP/48 at PSC 

I CPU Time (seconds) 
NmexlNumber oflFormation oflInversion 

IUnknowns l the Normals I 
6 1  46 I 2.98 I .0043 

35.58 .0677 
148.97 
431.67 1.8640 

1366 2118.51 16.3983 

(ii) Network Setup 

From the previous discussion it is clear that the completion of this 

work involves three research and/or computation centers: 

(a) The Ohio State University (OSU), where the preparation of the 

terrestrial databases, the design of experiments related to the 

formation of the  ''terrestrial'' normals and the analysis of results 

from the "terrestrial" point of view (anomaly and undulation 

comparisons etc.) are being performed. 

(b)  The Pittsburgh Supercomputing Center (PSC), where the  

"terrestrial" adjustments are being carried out. 

(c) The Goddard Space Flight Center (NASA/GSFC), where the 

"satellite" normals, the combination solutions and the related 

comparisons (orbit f i t s  etc.) are being performed. 

For that reason it was  essential to establish efficient procedures for 

communication and data exchange between these centers. In Figure 16 

the topology of the network established and the activities of each 

center are schematically presented. 
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(iii) Preliminary Investigations 

These constitute the main part of the numerical analysis performed 

in this study. A number of numerical experiments were carried out in 

order to investigate various aepects of the problem, and to improve the 

procedures used in the normal equation formation. In Section 5.2 the 
numerical results and the conclusions drawn from these investigations 

are presented. 

(iv) Validation 

The investigation related to this study is still undergoing. Hence, 

any results to be presented, by no means should be interpreted as 

"final". Although at present a number of combination solutions have 

been performed at NASA/GSFC, which include normal equations formed 

from surface gravity (see Table 7); it would be unfair to comment on 

these results since they are still under testing. Hence, in Section 5.3 

we will attempt to draw some conclusions regarding the quality of our 

results from comparisons of the terrestrial only solutions with other 

existing geopoten tial models. 

All the results to be presented refer to expansions up to N,,, = 
36. Although a set of normals up to N,,, = 50 has been developed 

recently from surface gravity, i t  will not be included in the 

presentation since additional tests and comparisons are still to be 

performed regarding this set. 
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5.2 Preliminary Investigations 

In the following paragraphs the results of a number of experiments 

performed in this study are presented and discussed. To simplify the 

presentation, avoid unnecessary repetitions and provide an easy 

reference, we will begin with a collective description of the datasets 

involved in the computations, the setup for each experiment and the 

criteria adopted for some of the comparisons made. 

5.2.1 Description of the D a t a s e t s  Used 

The basic datasets involved in the computations are listed on Table 
6 along with the notation adopted for their content. All  these datasets 

contain values corresponding to a l 'x l '  equi-angular grid on the 

ellipsoid. A brief descritpion of these datasets is given next. 

(1)-(3) 
Synthetic area-mean gravity anomalies computed from the December 

1981 potential coefficient set [Rapp, 19811, complete from Nmin = 2 to 

N,,, = 12, 36 and 180 respectively. These values refer to the surface 

of the reference ellipsoid defined by the GRS '80 geometric constants 

[Moritz, 19841, whose reference field is defined by the dynamical 

constants of the same sys t em.  

(4) 
Contains the surface mean free-air anomalies of the June 1986 

gravity data base (48955 values), discussed in Section 3.1.1. 

(5)-(9) 
These datasets contain the contribution to the l * x l '  mean free-air 

anomaly from various spectral bands, as  computed from different 

geopotential models. The names used are  rather self explanatory of the 

content of each data set. The reference values used in the formation 

of all these datasets are the ones used in the development of the 

OSU86 series of potential coefficient sets [Rapp and Cruz, 1986a, p. 41. 
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Table 6. Datasets Used in the Numerical Analysis 

- 
No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

- 

- 

Dataset N a m e  I Notatioi 
DEC81. TO12 I sg1 
DEC81.TO36 
DEC81. TO180 
JUN86 
DEC81. FROM37. TO180 
OSU86D.FROM37.TOl80 
OSU86F. FROM37. TO180 
OSU86F. FROM181. TO360 
OSU86F. FROM37. TO360 
ELLCORR 
TERRAIN 
FLAGSWI TH 
FLAGSWOUT 
TUG86 
TUG87 
OSU86F.FROM37.TO360.TOPEX 
ELLTERMS 

(10) 
Contains 1"xl' mean values of the sum of the ellipsoidal correction 

terms, 

as  defined in equations (2.111) and (2.112), computed from the OSU86F 

geopotential model complete from Nmfn = 2 to N,,, = 180. The OSU86 

reference values [ibid, p. 41 have been used for this computation. 

(11) 
Contains 466 values of l o x l o  mean terrain corrections in t h e  

continental United States. These data were  recevied from the Defence 

Mapping Agency/Aerospace Center in March 1987. The locations of 

these data are shown in Figure 17. Their use is discussed in Section 

5.2.7. 
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180 200 220 2uo 260 280 300 320 340 o 20 uo 60 80 100 120 140 16. 

Figure 17. Location of the 466 l-xl- Mean Terrain Corrections Received 

from DMA/AC. 

(12) 
This dataset was formed for weighting purposes. To each 1"xl' 

block a "flag" f, is assigned as follows 

\O otherwise 
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That is, the absolute difference of the 1.~1. mean anomaly implied by 

the OSU86F geopotential model complete from Nmin = 2 to N,,, = 36, 

and the corresponding adjusted value of the anomaly implied by the 

terrestrial only solution ADJUST20 (see Table 7), is compared against a 

threshold value of 10 mgals. The comparison was made only for the 

locations of the 48955 blocks of Figure 8. 

The rationale for t h e  use  of this information is discussed in 

Section 5.3.3. 

(13) 
Same as above but now the comparison is between the OSU86E and 

the ADJUST40 (see Table 7) implied anomalies. The comparison was 

performed only in the locations of the 43271 blocks of Figure 10. 

(14)-(15) 
Contain the two 1.~1. mean elevation data sets discussed in Section 

3.1.2, 

(16) 

equation (3.3). 

Same as (9) but computed using the TOPEX constants defined in 

(17) 
Contains 1.~1. mean values of the quantity 

* 
IEAJ + IE, - 1 5  

(see Section 

+ 1i;j 

2.3.6), computed f r o m  the OSU86F set of potential 

coefficients complete from Nmin = 2 to N,,, = 180. The TOPEX set of 

constants w a s  used in this computation. 

With the exception of (4) and (ll), all other datasets listed on 

Table 6 are complete sets of 64800 values. 
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Computations of synthetic anomalies and ellipsoidal correction terms 

were made using the SSYNTH subroutine of Colombo (1981). 

5.2.2 The Experiments to be Presented 

In Table 7 some of the experiments performed for this study are 

listed, along with the relevant information concerning the setup of each 

experiment. With respect to this  table the following comments need to 

be made: 

(i) Under the fourth column, the number of data used in each 

experiment takes three possible values with the following meaning: 

64800: applies only in cases where synthetic data are Used, since 

in none of our solutions we have used fill-in anomaly values. 

48955: applies in both synthetic and real data experiments and 

implies that the data used refer to the locations where a gravity 

anomaly estimate is available in the June 1986 data base (see 

Figure 8). 

43271: as above, but now data referring to the locations of Figure 

10 where geophysically predicted data are excluded. 

(ii) In the fifth column an entry zero implies that the adjustment was 

carried out on the ellipsoid. The case of ADJUST30 will be 

discussed separately in Section 5.2.7. 

(iii) In the sixth column an entry 1 implies that unit weight matrix is 

used. An entry 10 implies tha t  the standard deviation of all 

anomalies was  set to 10 mgals, while U J U N ~ ~  implies that the 

standard deviations of the June 1986 data base were used for 
the formation of the weight matrix ( p i j  = uT3(JuNes)). The 

entries (20,38), (20,38,f ) and (20,38,f ) will be separately 

discussed in Sections 5.2.6 and 5.3.3. 
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Finally, we should mention that in the cases where real data were used 

in the ad juetment, the atmospheric correction, the second order 

vertical gradient correction 6gg (Section 3.1.1) and the conversion of 

the gravity data from GRS'67 to the reference system used, were 

applied by the adjustment program. The only systematic reductions 

that need to be precomputed are the ellipsoidal corrections and the 
high frequency content of the anomaly data. 

5.2.3 Criteria Adopted for the Comparisons 

The analysis of the results obtained from the experiments listed 

above, involved, in most cases, intercomparisons between different sets 

of potential coefficients. For these intercomparisons a set of criteria 

established and used by Rapp (1986) has been adopted. These criteria 

are defined a s  follows: 

(1) The root mean square (RMS) undulation difference by degree and 

cumulatively. 

(a) By degree 

where R is a m e a n  earth radius 

(b) Cumulatively 

6N = [Nfsx 6 N i I x  
E=' (5.3) 

(2) The root mean square anomaly difference by degree and 

cumulatively 

(a) By degree 

(5.4) 
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where 7 is an average value of gravity. 

(b) Cumulatively 

6g = [N!ax fig;]% 
k 2  

( 5 . 5 )  

(3) The percentage differences of the coefficients by degree and 

cumulatively 

(a) By degree 

(b) Cumulatively (average percentage difference) 

(5.7) 

Note that Pj and P depend on which of the two sets to be compared is 

used as a reference (denominator of equation (5.6)). In the following 

presentations the adopted convention is that  the set used a s  reference 

is always listed first in the pair of coefficient sets being compared. 

Another two quantities that can be used to compare two coefficient 

sets are the average correlation by degree and cumulatively as defined 

by (Rapp, 1986). In our comparisons these quantities were only 

cursorily examined. 
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5.2.4 Recovery of Harmonic Coefficients and Ahsing Effects 

The experiments to be discussed next were designed and performed 

in order to investigate how the recovery of potential coefficients is 

affected by the frequency content of the sampled signal in conjunction 

with the completeness or sparsity of the sampling. 

The solutions performed for this  purpose are ADJ020, ADJO21, 

SOLV18 and SOLV19, all referring to the recovery of a complete set of 

coefficients from Nmin = 2 to N,,, = 36. In all cases the anomaly data 

used were noiseless. The setup for these experiments has as follows: 

(1) ADJOBO: The signal contains the same harmonics a s  the ones to be 

recovered and the sampling is complete (64800 values). 

(2) ADJOZ1: The signal contains the same harmonics as  the ones solved 

for, but only 48955 values corresponding to the locations of the 

anomalies in the June 1986 field are sampled. 

(3) SOLV18: The signal contains harmonics from Nmin = 2 to N,,, = 180 

and the sampling is as in (1). 
(4) SOLV19: The signal is as  in (3) and the sampling as  in (2). 

The recovered coefficients from each solution were then compared to 

the original coefficients which w e r e  taken from the December 1981 

[Rapp, 19811 gravity model. These comparisons are given on Tables 8 

and 9. 

Examining the results from ADJO2O (Table 8) we verify that the least 

squares adjustment recovers exactly the coefficients, if the harmonics 

contained in the signal are  the same as the harmonics estimated, and 

the sampling is complete. 

The results from the comparison of ADJO2l to the original 

coefficients should be carefully interpreted. First  of all they indicate 

that if 1 .~1 -  mean anomalies are sampled at  the 48955 locations 

corresponding to the locations of the June 1986 data base (Figure 8), 
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and if these samples are noiseless and contain harmonics from Nmin = 2 

Table 8, Comparison of the Coefficients Obtained From Solutions 

ADJOBO and ADJOBl With the Original Coefficients 

(December 1981 Field). 

DEC81 -vs- ART020 DBC81 -VS- ADJ02l 

2 5 
3 7 
4 9 
5 11 
6 13 
7 15 
8 17 
9 19 
10 21 
11 23 
12 25 
13 27 
14 29 
15 31 
16 33 
17 35 
18 37 
19 39 
20 41 
21 43 
22 45 
23 47 
24 49 
25 51 
26 53 
27 55 
28 57 
29 59 
30 61 
31 63 
32 65 
33 67 
34 69 
35 71 
36 73 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.01 
0.00 
0.01 
0.01 
0.00 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

0.00 

UNO. DIPP. 
(YBTBRS) 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0 000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.00 

A". D I P P .  8 D I P P .  
(-1 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

o.on 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.0: 
0.01 
0.00 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
3-01 

0.01 

UNO. D I F F .  
(-1 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0 .00  

A". DIP@. 
(-1 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 .00  
0.00 
0.00 
0.00 
0.00 
0 .00  
0 .00  
0 .00  
0.00 
0 .00  
0.00 
0 .00  
0.00 
0.00 
0 .00  
0.00 

0.1)0 

to N,,, = 36, then these samples are  sufficient for an almost perfect 

recovery of these coefficients. It should be emphasized here that this 

result pertains only for the  particular blocksize used here ( l * x l o ) ,  the 

particular number location of the data gaps and the particular 

degree of expansion. If any of these "components" of the system 

changes, one should expect changes in the agreement of the recovered 

coefficients to the original ones as well, and this is due to the fact 

that  the effect of data gaps is interrelated with the above 
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"components". For example, if we  keep the blocksize and the location 

and number of data gaps constant, and we start increasing the 

1 
1 

Table 9. Comparison of the  Coefficients Obtained From Solutions 

S O L V l 8  and SOLV19 With 

(December 2981 Field). 

DE81 -VS- WLVl8 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 
65 
67 
69 
71 
73 

0.14 
0.12 
0.12 
0.16 
0.15 
0.19 
0.23 
0.28 
0.29 
0.41 
0.58 
0.44 
0.68 
0.75 
0.62 
0.78 
0.86 
0.93 
1.30 
1.16 
1.09 
1.33 
1.73 
1.47 
2.34 
2.22 
2.53 
re56 
3.21 
3.82 
5.79 
5.33 
6.91 
29 88 
15-12 

AVERAGE 8 DIPP. 3.59 
RMS lRQDULATION DIFF. 
RMS ANOMALY DIPP, 

m. DIPP. 
(-1 

0.026 
0 023 
0.012 
0.012 
0.009 
0.009 
0.007 
0.008 
0 006 
0.007 
0 006 
0 006 
0 006 
0 006 
0 006 
0 006 
0 006 
0 e 006 
0 006 
0 006 
0 007 
0 006 
0.007 
0.006 
0.008 
0.007 
0 009 
0.008 
0.011 
0.011 
0.015 
0.015 
0,023 
0.087 
0.111 

AIOOY. DIPP. 
(-1 
0.00 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.03 
0.02 
0.03 
0.03 
0.04 
0.04 
0.05 
0.05 
0.07 
0.08 
0.11 
0.45 
0.59 

0.15 
0.77 

the Original Coefficients 

DEC81 -VS- 9oLV19 

8 DIPP, 

14.08 
11.17 
18.76 
17.49 
20.07 
18.74 
31.44 
30.19 
36 95 
42.23 
59.85 
13-62 
63 69 
64.68 
49.17 
69 33 
76.28 
82.63 
108.05 
83.50 
77.82 
86 32 
92.87 
84.43 
106.05 
109 34 
87.32 
104 11 
81.21 
114 96 
98.85 
94.22 
65.42 
76 60 
67 45 

65 58 

UND. DIFF. 
( m E = )  

2.522 
2.112 
1.809 
1.294 
1.148 
0.911 
0.970 
0.817 
0.834 
0.719 
0.632 
0.633 
0.550 
0.522 
0 t 469 
0.524 
0.531 
0 516 
0.511 
0.455 
0.465 
0.395 
0.381 
0.369 

0.348 
0.317 
0.333 
0.285 
0.319 
0 260 
0.272 
0.214 
0.222 
0.165 

0.360 

5.02 

ANOM. DIPP. 
( WALS 1 

0.39 
0.65 
0 . 8 3  
0.80 
0.88 
0.84 
1.04 
1.01 
1.15 
1.11 
1.07 
1.17 
1.10 
1.12 
1.08 
1.29 
1.39 
1.43 
1.49 
1.40 
1.50 
1.34 
1-35 
1.36 
1.38 
1.39 
1.32 

1.27 
1.47 
1.24 
1.34 
1.09 
1.16 
0.09 

1.44 

7.06 

maximum degree of the harmonics we e s t i m a t e ,  (increasing consistently 

the frequency content of the sampled data), we would experience a 

degrading i n  the agreement between the recovered and the original 

coefficients as  the maximum degree increases. In fact, at some point 

the normal system will become singular, even though the number of 

observations would still exceed the number of unknowns. The 
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particular degree a t  which the singularity will occur depends on the 

number and locations of the empty blocks. 

Such behavior will not be seen if the data grid is full. In that 

case we will always be able to recover the coefficients exactly (inside 

the limits of the numerical noise), as  long a s  the maximum degree (and 

order) of the complete set of estimated coefficients, does not reach or 

exceed the Nyquist frequency implied by the data sampling. If the 

maximum degree becomes equal to the Nyquist frequency the normal 

system becomes singular, although again, t h e  number of observations is 

larger than the number of unknowns. This is formally proved by 

Colombo (1981, p. 11). 

The results from the comparisons of SOLVl8 and SOLV19 with the  

original coefficients, given in Table 9, serve as an example of the 

aliasing effect discussed in Section 4.2.1. 

In SOLV18, although the Nyquist frequency is not exceeded by the 

estimated coefficients, and although the sampling is regular and 

complete, the recovered coefficients are distorted with respect to the 

original ones. This is due to the  fact that the signal has power 

beyond N,,, = 36 and the correlations between the coefficients from 2 
to 36 with the coefficients from 37 to 180 

well as  in SOLV19). Schematically we can 

as follows 

2 

J. 
3 6  

- - 
37 

J. 
180 

are  neglected in SOLV18 (as 

represent the normal system 

The exact recovery of the harmonics from 2 to 36 would have been 

given by [Uotila, 1986, p. 1551 
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(5.9) 

(5.10) 

Since N l z  is a non-zero mat r ix ,  %q will be different from the original 

coefficients represented by 2,. However, in SOLV18 the only non-zero 

elements in N12 are the ones corresponding to C$, and @, with n-r 

even (see equation (4.41)). It  is thus expected that the distortion of 

the spectrum from 2 to 36 will be increasing with the degree and in 

general will be small. Severe distortion occurs close to the "cut-off 

boundary", as  expected. In contrast the introduction of data gaps in 
SOLV19 masks the diagonal dominance of the normals. The 

cross-covariance matrix N 1  diverges far from the zero matrix (see also 

Figures 15a, 15c), so that  its omission in (5.10) causes severe 

distortions of the spectrum. The particular degrees affected most, are 

now a function of the number and location of data gaps and the 

distortion of the spectrum does not necessarily increase with 

increasing degree any more, as i t  is verified from Table 9. 

5.2.5 Removal of High Frequency Content of the Gravity Anomalies 

From the results presented in the previous section it becomes 

clear, that in order to obtain estimates of the harmonic coefficients 

from an incomplete set of anomalies, without suffering large distortions 

of the spectrum due to aliasing effects, the contribution to the anomaly 

data from all frequencies beyond the ones estimated has to be 

removed. 

In principle, to do so we need to devise an ideal low-pass filter 

that will effectively eliminate all the high frequency content of the 

data without distorting the spectrum of the lower frequencies. In 

practice, to construct such a filter is impossible since the exact 
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frequency content of each 1.~1. mean value of the gravity anomaly is 

unknown. There are two alternatives that can be used to approximate 

such a process: 

(1) Based on the l*xl* mean free-air anomalies, predict mean anomaly 

values over larger blocks (e.g. for expansions up to N,,, = 36, use 

5.~5'  blocks), in an attempt to reduce the high frequency content 

of the data. 

(2) U s e  an existing geopotential model (which extends beyond the 

maximum degree and order for which the current solution is 

attempted), in order to estimate the contribution of the higher 

frequencies to each 1.~1. mean anomaly, which then can be 

subtracted from each data value. 

Method (1) has the disadvantage that a covariance function between 

the 1.~1. mean values and the larger blocksize ( 5 . ~ 5 ' )  mean values has 

to be estimated, for global application, in such a way that it eliminates 

the power from all frequencies above the ones estimated, and causes 

the minimum distortion of the lower part of the spectrum. The 

difficulties involved in such a task are rather obvious. However, it 
should be mentioned, that if such a goal is achieved, the computational 

effort to form the normal system would be significantly reduced since 

much fewer  "observations" would be used in the adjustment (for 5'x5" 
blocks, 2592 values provide global coverage). 

In contrast, method (2) leaves the computational effort for the 

normal equation formation unchanged, but provides much better control 

over the frequencies which are eliminated and is in general "cleaner" 

in terms of additonal assumptions and approximations with respect to 

method (1). For these reasons we have decided to proceed using 

method (2) in this study. However, before using this procedure we 

had to investigate and clarify some important aspects. These are: 

(a) The sensitivity of the results of the least squares adjustment, with 

respect to the geopotential model used for the removal of the high 
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frequency content of the data. 

(b) The maximum degree (and order) u p  to which the high frequency 

contribution should be computed. 

To numerically investigate the first  problem we have performed three 

solutions in each one of which a different high degree field has been 

used for the removal of the high frequency contribution to the 

anomalies. In all cases this contribution was  computed from harmonic 

sets complete from Nmin = 37 to N,,, = 180. These solutions have a s  

follows: 

SOLVO4: Removal using the December 1981 field [Rapp, 19811. 

SOLVO3: Removal using the OSU86D field [Rapp and Cruz, 1986al. 

ADJUST02:Removal using the OSU86F field [Rapp and Cruz, 1986bl. 

The intercomparisons of the results obtained form these solutions are 

given on Table 10. Before we comment on these results let us  first  list 

two properties tha t  the high degree expansion is desirable to have for 

the purpose that we want to use it: 

(i) The surface gravity data used for the high degree expansion 

should be as consistent a s  possible with the surface gravity data 

used in the current solutions. Ideally we would like the high 

degree expansion to have been developed based on the s a m e  

surface da ta  with the ones used here. Unfortunately most of the 

existing high degree fields (e.g. OSU86 series of high degree 

expansions), have used, in the oceanic regions, primarily altimeter 

derived anomalies rather than ship-track estimates which are used 

in this study. 

(ii) The high degree expansion should contain a minimum of satellite 

information so that we do not introduce significant correlations 

between our reduced observables and the observables used in the 

orbital perturbation analysis. For this reason it is preferable not 

to use  high degree fields where a large number of satellite 

derived fill-in values has been used in their development (e.g. 
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OSU86C or OSU86E). 

Returning now to the results of Table 10 we observe that both 

solutions SOLVO3 and ADJUST02 have a substantial and about equal 

difference from the results of SOLVO4. This is expected because 
OSU86D and OSU86F are almost identical in the range of degrees 37 to 

180 (see also [Rapp and Cruz, 1986b, p. 12, Figure 4]), since they have 
been developed from consistent surface gravity data, while the 
December 1981 field has been developed from a substantially different 

set of surface anomalies both in terms of number of data and in terms 

of quality. 

Table 10. Intercomparison of Terrestrial Only Solutions Where 
Different High Degree Models Were Used for the Removal 

of the High Frequency Content of the Gravity Anomalies 

2 5 
3 7 
4 9 
5 11 
6 13 
7 15 
8 17 
9 19 
10 21 
11 23 
12 25 
13 27 
14 29 
15 31 
16 33 
17 35 
18 37 
19 39 
20 41 
21 43 
22 45 
23 47 
24 49 
25 51 
26 53 
27 5 1  
28 57 
29 59 
30 61 
31 63 
32 65 
33 67 
34 69 
35 71 
36 73 

Rws UloutATION DIPP. 
RM8 e Y  DIPF. 

A W R A a  DIPP. 

8 DIPP. 

2.10 
4.40 
4.97 
7.92 
#.77 
8.66 
12.1; 
10.77 
15.50 
15.45 
27.34 
18.17 
29 20 
20 17 
15.07 
19.62 
24.73 
24 94 
30 48 
24 34 
23.16 
23.17 
26 48 
26 29 
27.18 
29 88 
26 77 
31 07 
26.68 
29.30 
29 30 
28.44 
17.83 
22.37 
18.18 

20.28 

0.385 
0 t 867 
0.523 
0.532 

0.414 
0.375 

0.372 
0.344 

0.296 

0.410 

0 309 

0 359 

0.285 
0 217 
0.174 
0.203 
0.208 
0.195 
0.185 
0.100 
0 166 
0.156 
0.158 
0.149 
0.135 
0.124 
0.123 
0.130 
0.121 
0.127 
0 107 
0 106 
0 076 
0.094 
0.061 

1.76 

0.06 

0.24 
0.33 

0.27 

0.32 
0.38 
0.40 
0.38 
0.51 
0.53 
0.61 
0.55 
0.57 
0.47 
0.40 
0.50 
0.54 
0.54 
0.54 
0.55 
0.54 
0.53 
0.56 
0.55 
0.52 
0.50 
0.51 
0.56 
0.54 
0.59 
0.51 
0.52 
0.38 
0.49 
0.33 

2.84 

8 DIPP. 

3.85 
4.02 
5.29 
7.74 
7.81 
8.24 
12.70 
11.48 
16 43 
16.14 
28.48 
19.20 
29 e 52 
21.08 
17.06 
21.18 
25 69 
2" 12s 
34 06 
26 On 
25.37 
24.38 
27.33 
27.02 
28.01 
30 15 
27.63 
30.45 
26.01 
29.88 
29.51 
28 43 
18.59 
22.41 
18.59 

21 06 

90LV04 -VB- ADJUST02 

WND. DIPP. 
(-1 

0.707 
0.793 
0.558 
0.520 
0.412 
0.394 
0 393 
0.329 
0 394 
0.359 
0.374 
0.313 
0.288 
0 226 
0 197 
0 219 
0.216 
0.213 
0.207 
0 193 
0.182 
0.164 
0.163 
0.154 
0 139 
0 125 
0.127 
0 127 
0.118 
0.130 
0.108 
0.106 
0 079 
0 094 
0.062 

ANOM. DIPP. 
(-1 

0.11 
0.24 
0.26 
0.32 
0.32 
0.36 
0.42 
0.41 
0.55 
0.55 
0.63 
0.58 
0.58 
0.49 
0.46 
0.34 
0.57 
0.59 
0.60 
0.59 
0.53 
0.55 
0.58 
0.57 
0.53 
0.50 
0.53 
0.55 
0.53 
0.60 
0.51 
0.52 
0.40 
0.49 
0.33 

1.86 
2.95 
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Comparison between ADJUST02 and SOLVO3 yields an overall 

percentage difference of 3.52%, while the RMS undulation and anomaly 

differences are 0.58 m and 0.46 mgals respectively. However, part of 

this discrepancy is due to the fact that in ADJUST02 ellipsoidal 

correction terms have been included, in contrast to SOLVO3. 

From the point of view of the desirable properties listed before, 

either one of the two fields OSU86D and OSU86F can be equally well 

used for the removal of the high frequency content of the data. In 

the following solutions we have used OSU86F for this removal. 

The decision regarding the maximum degree up to which the 

removal should take place was greatly facilitated by an examination of 

the residuals obtained from the adjustment of the surface anomalies. 

In Figure 18 the geographical distribution of the 11404 residuals, 

obtained f r o m  ADJUSTO2, which exceed (in absolute value) 10 mgals is 

shown. 

Examination of this figure indicates that the residuals are highly 

correlated with the high frequency content of the anomaly field 

(observe their signature in the area of the Andes). This observation 

leads to the following two conclusions: 

(i) The frequency content of the l o x l o  mean values of the June 1986 

field extends beyond degree 180. 

(ii) The neglected correlations between the coefficients from degrees 2 
to 36 and the coefficients beyond 181 (see also equation (5.9)) are 

so small that the contribution of these coefficients to the anomaly 

data does not contaminate (at least extensively) our solution. 

Rather this contribution manifests itself in the form of residuals 

of the adjustment. 

Based on the above we have decided in the following solutions to 
remove from the data the high frequency part corresponding to the 
harmonics from 37 to 360. This part has been evaluated from the 

OSU86F set of potential coefficients [Rapp and Cruz, 1986bl. 
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180 200 220 210 260 280 300 320 340 o 20 uo 60 aa 100 120 140 160 180 

Figure 18. Locations of the 11404 Residuals in ADJUST02 Exceeding i n  

Absolute Value 10 mgals. 

180 200 220 210 260 280 300 320 340 o 20 uo 60 80 t o o  120 140 160 i a o  

Figure 19. Locations of the 9416 Residuals in ADJUST20 Exceeding in 

Absolute Value 10 mgals. 
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A solution of this type is ADJUSTBO. In Figure 19 the locations of the 

9416 residuals from ADJUST20 whose values exceed (in absolute value) 

10 mgala are shown. It is interesting to note that in the land regions 
where the data used in ADJUST20 are consistent with the data in 

OSU86F, the least squares adjustment yields a remarkable fit. 

On the other hand the comparison between ADJUST02 and ADJUST20 

yields an overall percentage difference of 8.7% with the RMS undulation 

and anomaly differences being 0.74 m and 1.15 m g a l s  respectively. 

When the two solutions ADJUST02 and ADJUST20 are compared to a 

common standard (the OSU86F field), they yield practically the same 

differences as  it can be seen from the results given on Table 11. 
These numbers substantiate the argument made in (ii) above. 

An additional comment should be made regarding the computation of 

the contribution of the higher frequencies to the anomaly data. A s  it 
can be seen f r o m  equation (4.10) this  contribution has to be evaluated 

at the eurface level (r = Fi  j )  in order to be consistent with the 

anomaly data which refer to the surface of the earth. However, the 

elevation introduces a long wavelength effect which can be neglected 

here since we are interested in the high frequency part of the 

spectrum. Accordingly, in this study, the t e r m s  (6ghf)i  were 

evaluated on the surface of the ellipsoid ( r  = r E i ) .  

5.2.6 Weighting of the Surface Gravity Data 

There are two basic problems associated with the estimation of the 

error properties of the surface gravity data and their influence on the 

results of combination solutions: 

(a) The assumption that the errors of the surface gravity data are 

uncorrelated 
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Comparison of Solutions ADJUST02 and ADJUST20 to the 

OSU86F Geopotential Model 

oBu86P -vs- ADJUST02 

2 5 
3 7 
4 9 
5 11 
6 13 
7 15 
8 17 
9 19 

10 21 
11 23 
12 25 -~ 
13 27 
14 29 

19 39 
ao 41  
a i  43 
22 43 
23 47 
24 49 
2s 5 1  
26 53 
27 55 
28 57 
29 59 
30 61 
3 1  63 
32 65 
33 67 
34 69 
35 71 
36 73 

A V S R K S  t DIFF.  
RIW -?ION DIFP. 
RIW MmALY DIFF. 

21.26 
12.86 
19.98 
18 23 
19 25 
21.05 
35.00 
31  s 21 
34.04 
51  33 
45 46 
37.97 
63.66 
63.65 
71  08 
78.48 
6b.41 
71.95 
82.13 
91.39 
68 60 
70.15 
77.24 
6 1  00 
79 36 
56 09 
51.13 
68.49 
50,78 
53.34 
42.41 
46.34 
36-21 
38.94 
37.13 

50.73 

UND. DIPP.  
(-1 

3.008 
2.434 
1.928 
1.349 
1.100 
1.006 
1.077 
0.841 
0.762 
0.871 
0.515 
0.548 
0.569 
0.480 
0.572 
0.537 
0.465 

0.392 
0.449 

0.422 
0.372 
0.315 
0.301 
0.298 
0.266 
0.186 
0.198 
0.227 
0.196 
0.177 
0.140 
0.160 
0.143 
0.135 
0.111 

5.89 

ANON. DIPP.  
(IIOALs) 

0.59 
0.75 
0.09 
0.83 
0.85 
0.93 
1.16 
1.03 
1.06 
1.34 
0.87 
1.01 
1.14 
1.03 
1.32 
1.32 
1.22 
1.24 
1.14 
1.30 
1.20 
1.07 
1.06 
1.10 
1.02 
0.74 
0.82 
0.98 
0.88 
0.81 
0.67 
0.79 
0.73 
0.71 
0.60 

5.91 

% D I W .  

20.18 
13 60 
20.41 
17.92 
19 Ob 
20.41 
34 22 
28.81 
33.49 
50.33 
45 08 
36.85 
61-76 
64.40 
70.36 
8 1  36 
68.78 
76 6 1  
81  40 
92.92 
67 73 
73.55 
74 61  
61  67 
78 80 
56 60 
49 66 
70.15 
53 19 
5c.00 
43.79 
48 00 
40.37 
39.13 
38.75 

51.23 

OSU86P -VS- ARNsT20 

m. DIFF.  
(-1 

3.615 
2.573 
1 970 
1.327 
1.088 
0.978 
1 OS4 
0.776 
0.750 
0.B54 
0.511 
0.532 
0.588 
0.486 
0.566 
0.556 
0.482 
0.479 
0 388 
0.430 
0.368 
0.330 
0 290 
0.302 
0.264 
0.188 
0.192 
0.233 
0.206 
0.182 
0 144 
0.166 
0.151 
0.136 
0.116 

5.82 

Mow. DIFF.  
(-1 

0.56 
0.79 
0.91 
0.82 
0.84 
0.90 
1.13 
0.95 
1.04 
1.31 
0.86 
0.98 
1.18 
1.05 
1.31 
1.37 
1.26 
1.33 
1.13 
1.32 
1.19 
1.12 
1.03 
1.11 
1.02 
0.75 
0.80 
1.00 
0.92 
0.84 
0.69 
0.82 
0.77 
0.71 
0.62 

5.95 

(b) The need for an appropriate relative weighting scheme, so that an 

optimum combination of the satellite and terrestrial normal 

equations can be achieved. 

It was mentioned before (Section 3.1.1) that the assumption of 

uncorrelated noise for the surface anomalies is an unrealistic one. W e  

recognize that especially for data belonging to the same source common 

systematic errors in the observations or the compilation procedures 

used for their estimation may be present, causing error correlations 

between such data. Weber and Wenzel (1982) have investigated 
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estimation of error covariance functions for a limited area in Europe 

based on the existing differences between dual or multiple data sources 

referring to this area. 

However, implementation of the same technique on a global basis is 

not possible at present, due to the lack of redundant data and the 

inhomogeneity of the quantity and quality of available data from one 

area to another. 

In an attempt to compensate for the omission of the existing 

correlations between the surface anomaly estimates Rapp and Cruz 

(1986a) have rescaled (increased) the  variances of the anomaly 

estimates provided in the June 1986 data base, and constrained their 

values in a specified range, in order to obtain moderate weight ratios. 

The particular rescaling and the range of the variances selected have 

been determined in an empirical fashion heavily dependant on numerical 

experimentation [Rapp and Cruz, 1986a, Sections 6.1, 6.31. 

Numerical experimentation is also employed for the  determination of 

appropriate relative weights for the terrestrial and the satellite 

normals in combination solutions. The goal here is mainly to obtain 

realistic error degree variances for the potential coefficient estimates 

of t h e  combined solution. To investigate the implications of different 

relative weighting schemes and facilitate the determination of optimum 

relative weights, a number of comparisons (potential coefficient error 

degree variances, RMS from satellite orbit f i t s ,  Doppler derived 

undulations) has been performed and examined in the development of 

the OSU86C/D geopotential models [Rapp and Cruz, 1986a, Section 6.31. 
Corresponding comparisons provide also the means of determining 

optimal relative weights in the combination solutions performed by 

NASA/GSFC (see also [Marsh e t  al, 1987, p. 193, Table 8.11). 

In this study we have performed three test solutions (only from 

surface gravity data), in order to investigate the effect of different 

weighting schemes. 
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SOLVOl: all anomaly standard deviations are  set to 10 mgals 

SOLVOB: the anomaly standard deviations of the June 1986 field 

(atj(JUN86)) are used* 
SOLVO3: the standard deviation u i  of the data value d g i j  is defined as 

follows 

(5.11) 

Such a weighting scheme was used in the development of the OSU86C/D 

gravity models [Rapp and Cruz, 1986al. 

The weights in all three solutions are assigned by 

where a$ denotes the a priori variance of unit weight and has always 

been set equal to 1 (unitlese), 

O n  Table 12 the results from the comparisons of these solutions 

with the O S U 8 6 F  potential coefficient set are given. These results 

indicate no significant change on the solutions due to the various 

weights used. 

The s a m e  behavior was seen by examining the classification in 

terms of magnitude and the geographical distribution of the residuals 

from these solutions. It is interesting to note the values of the a 

posteriori variance of unit weight (Gg) resulting from these solutions. 

We have 

SOLVOl: G: = 1.22 
SOLVOZ: G: = 2.51 

SOLVO3: G i  = 0.15 
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From the point of view of internal consistency the 10 mgal standard 

deviation for the gravity data appears to yield the best results, while 

the June 1986 and (20,38) weighting schemes indicate optimistic and 

pessimistic es t imates  for the  accuracies respectively. 

The similarity of the results from these solutions regardless of the 
weights used should be expected. The effects of different weighting 

schemes for the anomalies will become apparent only when the dual 

satellite information is introduced in the  combined solution. 

However, in our case we did not have the ability to perform 

combined solutions and examine the effect of different relative weighting 

schemes. Hence, we decided to relay on the results of Rapp and Cruz 

(1986a) and adopt (at least in the beginning) the (20,38) weighting 

scheme used in the OSU86C/D solutions. The fact that such a selection 

was not an inappropriate one was verified later, when the first 
preliminary results f r o m  combined solutions were made available to us 

[E. Pavlis, private communication]. According to these results the 

"calibration scale factors'' (see [Marsh et al, 1987, p. 264 for definitions) 

by degree and by order obtained for PGS3226 (see Table 7) were 0.97 

and 0.93 respectively with their ideal values being 1.00. 

From the discussion given above it becomes apparent that  the 

treatment of the error properties of the data is currently based on 

empirical methods heavily based on numerical experimentation. Although 

numerical experimentation (to some extent) will probably remain 

necessary a s  a tool guiding t h e  analysis and the making of decisions, i t  

would be highly desirable to further investigate, also from the 

theoretical point of view, the estimation of error properties for global 

surface anomaly data bases. 
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5.2.7 The Use  of Terrain Corrections 

In order to numerically investigate the influence of the use of 

terrain corrections on our results we have performed the solution 

ADJUST30 with the following setup: 

ADJUST30: the "observations" which are input to the adjustment are 

defined by (see Table 7) 

for the locations corresponding to the 466 blocks of Figure 17, and as  

(5.13) 

for the rest of the 48955 blocks of Figure 8. In the cases 

corresponding to (5.12), dg, ]  is assumed to refer to the surface of the  

reference ellipsoid (elevation is set to zero), in agreement with the 

formulation presented in Section 2.4. 

With the exception of the use of terrain corrections this  solution is 

identical in terms of setup with ADJUST20 (weighting scheme, high 

frequency content removal etc), as  it can be seen from Table 7. Hence, 

the effect of the terrain corrections is examined by an intercomparison 

of the results from these two solutions. 

The average percentage difference of ADJUST30 as  compared to 

ADJUST20 was found to be 1.74%, while the RMS undulation and anomaly 

differences between the two solutions were 0.51 m and 0.27 m g a l s  

respectively. However, these figures are representative of the 

differences between the two fields in a global sense. Of greater 

interest here are the differences between the two solutions in the area 

where the terrain corrections were applied. 
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Figure 20 illustrates the undulation differences between the two 

solutions ( N A D J U S T ~ O  - N A D J u s T ~ ~ )  in the region of interest (4  = 30' to 4 

= 50' and A = -130' to A = -70'). 

LONGI TUDE 
-100 

-100 
LONGI TUDE 

-70 

Figure 20. Undulation Differences - ADJUST20 Minus ADJUST30 (Contour 

Interval is 1 m, Based on a 2'xZ' Grid) Superimposed are tho  

Locations of Selected Laser Stations. 

Comparing Figure 20 with Figure 17 it becomes clear that the terrain 

corrections have left a long wavelength signature on the field in the 

area where they were  applied. The fact that such a signature is an 

erroneous one was verified through comparisons of the undulations 

computed from the two solutions with the undulations a t  13 laser 

stations in the above area. The latter, denoted by NGj were given by 

Despotakis (1987, p. 46, Table lo),  and have been computed by 

differencing the ellipsoidal and orthometric heights a t  these stations. 

They refer to an ellipsoid with parameters 

a = 6378136.0 m 

l/f = 298.257222101 
(5.14) 
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The locations of these stations are also, shown in Figure 20. For the 

purpose of this  comparison we have formed two geopotential models both 

up to N,,, = 360 as follows: 

model F20: ADJUSTZOa+36 augmented by OSU86F37+360 
model F30: ADJUST302+36 augmented by OSU86F31+360 

The undulations implied by F20 and F30 (denoted N a o  and N3,, 

respectively) at the locations of the 13 laser stations were computed and 

compared with NG. The results of this comparison are given on Table 

13. Comparing the differences given in columns five and six we verify 

that ADJUST20 is in good agreement with the "ground truth" while 

ADJUST30 suffers from the long wavelength errors shown in Figure 20. 

The last column serves as  a double check of the values shown in Figure 

20. 

A t  th i s  point we have no answer to what causes the problem 

Possible causes for this problem m a y  be: identified before. 

(a) The omission of the t e r m s  (2.148) and (2.152) may not be permissible 

for the degree of expansion we use here (36). In [Moritz, 1966, p. 

1051 it is postulated that such omission is justifiable up to degree 

about 5. In our application such a guideline is certainly being 

violated. 

(b) The use of the  terrain corrections only in a limited area. 

Further investigation is required in order to elucidate the appropriate 

use of terrain corrections in global geopotential modeling. 

5.3 Validation 

During the  course of this study five major sets of normal equations 

have been developed from surface gravity data, to be used in 

combination solutions a t  NASA/GSFC. These normal sets (and the 

corresponding terrestrial only solutions) are denoted 
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-18.49 
-18.50 
-30.17 
-28.60 
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-20.69 
-20.70 
-26.44 
-26.65 
-17.97 
-17.97 
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Table 13. Undulation Comparisons at Laser Stations in the Western 

United States 

NG-NlO NG-N30 

-0.48 -4.07 
-0.50 -4.09 

0.16 -2.30 
0.33 -2.26 

-0.04 -3.96 
-0.44 -4.21 
-0.38 -4.15 

0.24 -3.24 
0.50 -2.93 

-1.22 -2.81 
-1.27 -2.86 
-1.72 -4.67 
-1.72 -3.88 

7084 
7114 

7086 
7885 
7112 
7921 

Units 

NG 

-22.57 
-22.59 
-32.47 
-30.86 
-12.58 
-24.90 
-24.84 
-29.68 
-29.58 
-20.78 
-20.83 
-17.40 
-29.47 

N 2  0 

-22.08 
-22.09 
-32.64 
-31.19 
-12.54 
-24.46 
-24.46 
-29.92 
-30.08 
-19.56 
-19.56 
-15.68 
-27.75 

are  m e t e r s  

N2 0-Nf 0 

-3.59 
-3.59 
-2.46 
-2.59 
-3.91 
-3.77 
-3.77 
-3.48 
-3.43 
-1.59 
-1.59 
-2.95 
-2.15 

(1) ADJUSTZO: 48955 observations (include geophysical data) 

(2) ADJUST40: 43271 observations (exclude geophysical data) 

(3) ADJUST65 48955 observations (include geophysical data) 

(4) ADJUST71: 43271 Observations (exclude geophysical data) 

(5)  ADJUST81: 48955 observations (include geophysical data) 

The first two solutions were developed based on the same setup as 

far as weighting, removal of high frequency content of the anomalies 

etc. are concerned, as it can be seen from Table 7. The difference 

between them is the  exclusion of geophysically predicted anomalies in 

the second set. 

The second pair of solutions differs from the first by the  use of the 

improved elevation data (TUG87), and the use of a different weighting 

scheme which will be discussed in Section 5.3.3. Again this pair 

consists of one solution where geophysical data are included in the 

adjustment, and one where they are excluded. 
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Finally, in the last set the systematic reduction 6ghz discussed in 

Section 3.1.1, w a s  applied to the anomaly data, in contrast to the 

previous solutions. This solution reflects the optimum procedure for the 

analysis of surface gravity data, suggested by this study. 

The first four normal equation sets already have been used in 

combination solutions performed a t  NASA/GSFC. 

The majority of the comparions and tests to be presented in the 

sequel refers to solutions (1) and (2). However, as  it can be seen from 

Table 7 and as  it will be discussed in the following, the differences 

between corresponding solutions (using the same number of 

observations), are rather minor, so that the conclusions drawn from 

these comparisons pertain also to the cases of (3), (4) and (5). 

The evaluation of the quality of our results will be mainly based on 

comparisons with two geopotential models. The GEMTl [Marsh et al, 

19871 which is a satellite only field complete to degree and order 36, 

and the OSU86F [Rapp and Cruz, 1986bl which is a combined high 

degree geopotential model complete up to 360. 

5.3.1 Comparisons With Existing Geopotential Models 

Before we attempt any comparisons of our results with satellite only 

or combined solutions, it is important to compare the input of our 

adjustment, i.e. the surface gravity data, with the values implied for 

these data from the satellite solutions, Such a comparison will indicate 

the agreement between the gravity field as this is sensed by the 

satellites and the gravity field which is implied by the surface 

measurements. In addition it will provide us with a fairly good idea of 

what we should expect from the comparisons of our results with satellite 

only solutions, since the output of any adjustment primarily reflects the 

characteristics of its input. For that purpose the following comparisons 

were performed: 



121 
(a) A set of 48955 1 . ~ 1 ~  anomaly values were  computed a s  (see Table 6 )  

(5.15) 

These values essentially represent the input of our adjustment since 

the systematic correction t e r m s  (ellipsoidal corrections etc.) are of 

very sma l l  magnitude. 

(b) A global set of 1.~1. mean anomalies was formed using the GEMTl 

coefficient set complete f rom Nmin= 2 to N,,, = 36. These anomalies 

are denoted AgCEM. 
- 

The differences between igCEM and dg,,  were  then evaluated in the 

areas where the June 1986 field contains an anomaly estimate (Figure 8 ) .  

In Figure 21 the locations where the absolute value of such differences 

is larger than or equal to 10 mgals are shown. From this  figure it 
becomes apparent that systematic discrepancies between the satellite 

implied and terrestrial field exist in large continental areas. Since the 

extent of many of these areas exceeds the minimum wavelength 

recoverable by an expansion up to 36, it is expected that the results of 

terrestrial only solutions will reflect these inconsistencies. 

It is also interesting to examine if the above discrepancies are 

related to geophysically predicted data in the June 1986 field. The 

results of a corresponding comparison peformed only over the 43271 

locations of Figure 10 are illustrated in Figure 22. Although some of 

these inconsistencies are associated with geophysically predicted data 

(USSR, China), Figure 22 indicates that such inconsistencies exist also in 

areas where observed gravity data are available (Africa, South America). 

With the above as a background, we next performed the 

corresponding comparisons between AgcEn and the adjusted values of 

the gravity anomalies obtained from the solution ADJUST20 and 

ADJUST40 (see Table 7), denoted i g A Z 0  and bgA40 respectively. The 

results from these comparisons are  illustrated in Figures 23 and 24 
respectively. 

- 

- 
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- 
Figure 21. Locations of the 17082 1 . ~ 1 .  Blocks Where I AgGEn - dgi I jr 

10 mgals (Geophysical Data  are Included in the Comparison). 

180 200 220 2UO 260 280 300 320 390 0 20 UO 60 80 100 120 190 160 180 

Figure 22. Locations of the 14412 1 . ~ 1 .  Blocks Where l h g ~ ~ n  - d $ i n l  

10 mgals. (Geophysical Data are Excluded from the 

Comparison). 
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180 200 220 2UO 260 280 300 320 340 0 20 UO 60 80 LOO 120 1110 160 180 

- - 
Figure 23. Locations of the 9745 1.~1. Blocks Where IAgcEn - AgAlol > 

10 mgals (Locations Corresponding to Geophysical Data are 

Included in the Comparison). 

- 
Figure 24. Locations of the 7545 l*xl* Blocks Where Iig,,, - AgA40 1 

10 mgals (Locations Corresponding to Geophysical Data are 

Excluded from the Comparison). 
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There are two main observations to be made with respect to these 

figures. 

(i) 
As expected the inconsistencies between the satellite implied and 

terrestrial fields, that were  observed over extended geographical regions 

are also reflected (with remarkable exactness) in the results of 

terrestrial only solution (compare Figures 21 and 23 or 22 and 24). 

(ii) 

The behavior of the least squares adjustment in areas where the 

inconsistencies between the satellite implied and terrestrial fields are 

localized is rather interesting, Typical examples of such cases occur in 

oceanic regions. From the examination of Figures 19, 21 and 23 it 

becomes apparent that  the discrepancies between the two sources of 

information in such cases are closely related to the residuals of the 

terrestrial only solution. In fact it appears that the terrestrial 

adjustment yields adjusted anomalies that are closer to the satellite field 

implied anomalies than to the surface observations! 

Before w e  attempt to explain why such behavior is observed we will 

present a comparison that clarifies the issue. We consider the residuals 

of the solution ADJUSTBO, denoted vzo, and we form the following 

differences: 

and 

b = vzo - a 

Note that (see also Table 6 and equation (5.15)), 

(5.16) 

(5.17) 

(5.18) 
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hence, apart from the s m a l l  systematic correction terms, b represents 

the differences between the adjusted anomalies from ADJUST20 and the 

GEMTl implied anomalies. 

Based on the values a and b we then identify the locations where 

la1 10 mgals & Ibl < 10 mgals (5.19) 

and where 

la1 > 10 mgals & Ibl > 10 mgals. ( 5 . 2 0 )  

Locations where the conditions (5.19) are simultaneously fulfilled indicate 

the cases where, although the input of our adjustment differs from the 

GEMTl implied anomaly substantially (with respect to the threshold value 

of 10 mgals), the output is closer to the satellite implied anomaly than to 

the terrestrial one (again with respect to the 10 mgal threshold value). 

The cases where the opposite occurs are indicated by the simultaneous 

fulfillment of conditions (5.20). Figures 25 and 26 illustrate the 

geographical distribution of t h e  blocks where conditions (5.19) and (5.20) 

are fulfilled respectively. These figures verify that the speculation 

made in (ii) above about the behavior of the terrestrial solution in the 

cases of isolated (localized) discrepancies between the satellite and 

terrestrial information is indeed a fact. It remains now to explain how 

the terrestrial solution (which has no information about the satellite 

implied field) can yield in these cases results that agree better with the 

satellite information than with its own input. The explanation is rather 

obvious. The least squares adjustment does not yield values agreeing 

better with the satellite implied anomalies; what it does though for these 

isolated blocks, is that it yields values that are in agreement with the 

anomaly values of the broader neighborhood of these blocks (which 

happen to be in good agreement with the satellite implied anomalies). 

The underlying cause of such behavior of the least squares adjustment 

is the sampling interval in conjunction with the maximum estimated 

degree of the expansion. The 1.~1. interval provides enough data 
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Figure 25. Locations of the 10249 1"xl' Blocks Where Conditon (5.1%) is 

Fulfilled. (Locations Corresponding to Geophysical Data are 

Included in the Comparison). 

90 

80 

60 

uo 

20 

0 

-PO 

-YO 

-60 

-80 

-90 

180 200 220 2'40 260 280 30D 920 3'40 0 20 I O  60 80 100 120 140 160 160 
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Included in the Comparison). 
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redundancy to enable the least squares adjustment to isolate (by 

assigning them large residuals), observations which do not comply with 

the m o r e  general pattern implied by their broader region (outliers). An 

illustrative example explaining the above can be given if we consider a 

least squares f i t  of a straight line into sampled data (Figure 27), for 

two different sampling patterns. In Figure 27a all the data sampled are 
used. Point P, which does not comply with information implied by its 
neighboring points will be characterized by a large residual. If now 

P 

. .  
1 1  

I 

4 d f C  

Figure 27. The Least Squares Adjustment and the D a t a  Sampling. 

the previous observations are averaged over some interval d and the 

s a m e  fit is attempted (Figure 27b), the point 6 which represents the 

mean value in the region of P will be characterized by a much smaller 

residual and the quality of the f i t  in the region of will not differ 

much from the quality of the f i t  on the other points. On the other 

hand if we keep the  sampling a s  in Figure 27a but we start increasing 

the degree of the polynomial to be fitted to the data, the corresponding 

residuals for P will decrease eventually making P appear as  a valid 

observation. 

From the above discussion it becomes clear that there is an 

additional good reason for preferring the l*xl* sampling with the 

removal of the high frequency content from the data, over the 
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alternative use of 5 .~5 '  averages. If 5'x5' averages were used we 

would have no way to identify very localized inconsistencies between the 

satellite and terrestrial solutions. 

Up to now all we have determined is the existence of inconsistencies 

between the satellite implied field and the terrestrial one. The next 

step, of course, is to t ry  to determine which of the two sources 

provides a more accurate estimate of the gravity field. To facilitate the 

investigation in this direction we have to employ comparisons with 

external sources of information. W e  will distinguish between the case of 

the oceanic regions where the inconsistencies found were  more of local 

character, and the continental areas where more regional problems were 

experienced. In the oceanic regions, anomalies obtained from altimetric 

observations will provide the external source, while in the continental 

regions (which will be discussed in the next section) Doppler derived 

undulations will be used as  independent source of information. 

Figure 28 illustrates the locations of the  6833 l'xl. blocks where 

(see Table 6 )  

- 
with Agalt denoting the l-xl' anomaly implied from the altimetric 

observations. These anomalies were estimated from the combined 

GEOS3/SEASAT altimeter data [Rapp, 19851. In contrast Figure 29 

illustrates the locations of the 3574 lmxle blocks where (see Table 6 )  

Figure 29 shows a good agreement between the GEMTl implied anomalies 

and the altimetry derived anomalies. Hence, the discrepancies shown in 

Figure 28 are most probably due to erroneous ship-track measurements. 
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Figure 29. Locations of the 3574 l*xl* Blocks Where IigGEM - (ialt - 
hf5)  I > 10 mgals.  



Comparisons as the ones discussed above provide 
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information about 

the geographical distribution and the number of the l o x l o  blocks 

where inconsistencies between the satellite-implied and the terrestrial 

data are observed. However, they do not provide information about 

the magnitude of these discrepancies (other than the crude information 

provided by the threshold value used). In  order to obtain such 
information we have plotted global undulation and anomaly difference 

maps between the satellite only field (GEMT1) and the terrestrial only 

solutions. 

In Figures 30 and 31 the gravity anomaly and undulation 

differences between GEMTl and ADJUSTZO are illustrated. Note that 

examination of such plots should always take into account the data 

coverage used in the development of the terrestrial only solutions, in 

order to  discriminate between areas where large discrepancies occur 

due to lack of terrestrial data (South Pacific, Antarctic region) and 

areas where systematic inconsistencies between satellite and terrestrial 

data exist (Soviet Union, Mongolia, China, Afr ica  and Brazil). 
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Figure 30. Gravity Anomaly Differences: GEMTl 

on a 5.~5' Grid (Contour Interval is 
Minus ADJUSTZO Rased 

4 mgals).  
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Figure 32. Undulation Differences: GEMTl Minus ADJUST40 Based on a 

5’x5’ Grid (Contour Interval is 4 m). 



132 

A comparison in t e r m s  of undulations between GEMTl and ADJUST40 

is shown in Figure 32. A s  it can be seen from this plot, large 

oscillations of the terrestrial only solution occur in the extended gap 

generated by the exclusion of geophysical data. In addition a 

comparison of Figures 31 and 32 indicates that ADJUST40 is 

characterized by more long wavelength differences with respect to 

GEMTl than ADJUST20. This should be expected since the exclusion of 

geophysical data, which cover extended regions, degrades the 

estimability of long wavelength features of the gravity field. 

In Figures 33 and 34 the corresponding comparisons are given 

between the OSU86F combined solution (up to N,,, = 36) and the 

solution ADJUSTPO. Although these plots are very similar to 30 and 31 

respectively, there is an important difference to be noted from the 

comparison of 30 with 33 (or 31 to 34). The differences between 

ADJUST20 and OSU86F have less power in the high frequencies as 

compared to the differences between ADJUST20 and GEMT1. 
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Figure 33. Gravity Anomaly Differences: OSU86F Minus ADJUST20 Based 

on a 5.~5' Grid (Contour Interval is 4 mgals). 
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Figure 34. Undulation Differences: OSU86F Minus ADJUST20 Based on 3 

5 . ~ 5 '  Grid (Contour Interval is 4 m). 

Such behavior should be expected since GEMT1 fails to recover 

high frequency features of the gravity field, while the opposite is true 

for OSU86F and ADJUST20. In Figure 35 this aspect is illustrated in a 

better way. In this figure the percentage differences of PGS3041 (a 

pre GEMTl satellite only solution), and ADJUSTBO, with respect to 

OSU86F are plotted. A t  low degrees ((6) OSU86F and PGS3041 show an 

excellent agreement which is expected since OSU86F has used GEML2' 

[Lerch et al, 1982al to control these coefficients, and PGS3041 is not 

expected to have large discrepancies with GEML2' . 
For the same degrees, in the case of ADJUST20 the percentage 

differences are larger, a fact which expresses the inability of the 

terrestrial only solution to recover long wavelength features of the 

geopotential. However, at  degree about 20, the picture changes, and 

PGS3041 departs from OSU86F, while the discrepancies of ADJUST20 

wi th  OSU86F start  to drop. This is due to the inadequacy of a 
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Figure 35. Percentage Differences Between OSU86F Versus ,iD.,vT!ST20 

and OSU86F Versus PGS3041. 

satellite solution to recover high frequency features of the 

geopotential. Figure 35 can be used to describe in a compact and 

clear manner the whole idea and purpose behind the combination 

solutions. It also suggests that when Figures such as  30 or 31 are 

examined, very long wavelength biases should not be considered a 

problem, since they merely reflect the inability of the terrestrial only 

solutions to recover low degree coefficients. However, systematic 

differences such as the ones occuring in Af r i ca ,  constitute a problem, 

since their extent corresponds to wavelengths which should be 

recoverable by terrestrial only solutions. 
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5.3.2 Systematic Inconsistencies Between Satellite Only and Terrestrial 

Only  Solutions 

One of the continental regions where systematic inconsistencies 

between the satellite and terrestrial solutions are observed is Africa, 

We have decided to further investigate the problem in this  area for 

two reasons: 

(a) The discrepancies in this area are quite large (e.$. 24 m undulation 

differences are observed in Figure 31), and 

(b) A fairly well distributed set of Doppler Stations covering the area 

in question was available, providing an independent standard for 

comparison. 

Large systematic differences occur also in Asia (see Figure 31), 
however no redundant information for comparisons is available in these 

regions . 
In Figure 36 a more detailed anomaly difference contour map is 

given for the area in question. It can be seen from this figure that 

the differences reach values of 24 mgal. 

O n  the other hand, Figure 37 shows that the undulation differences 

in this area reach values of -24 m. Figure 37 shows also the locations 

of some of the 32 Doppler stations that were used in the following 

comparison: 

(a) We started with a set of 32 "Doppler undulations" denoted by No 
and evaluated by 

where hD (the Doppler derived ellipsoidal height) was first 

converted from the Doppler reference frame to a geocentric, 

properly scaled reference frame using the translation and scale 
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Figure 36. Gravity Anomaly Differences: GEMTl Minus ADJUST20 Based 

on a Z'x2' Grid (Contour Interval 2 mgals). 
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Figure 37. Undulation Differences: GEMTl Minus ADJUST20 Based on a 

2'xZ' Grid (Contour Interval 4 m).  Superimposed are 

Selected Doppler Station Locations. 



Table 14. Undulation Comparisons at Doppler Stations in Africa. 

SELECTED DOPPLER STATIONS IN AFRICA ..................................... 
N* I DOPPLER UNDUL. - UNDUL. IMPLIED BY OSU86F (NMIN=37,NMAX=360) 
NTl I UNDUL. IMPLIED BY GEMTl (NMIN=Z,NMAX=36) 
NA20 I UNDUL. IMPLIED BY ADJUST20 (NMIN=Z,NMAX=36) 
ON1 N* - NT1 
DN2 N* - NA20 
DN3 9 WPPLER UNDUL. - UNDUL. IMPLIED BY OSU86F (NMIN=Z,NMAX=360) 

STN LAT LON H(ELL) N* NT1 NA20 DN1 DN2 DN3 

305 
333 
334 
345 
358 
370 
373 
375 
379 
381 
394 
395 
440 
450 
462 
468 
471 
510 
512 
530 
535 
538 
541 
543 
547 
575 
584 
585 
594 
622 
661 
662 

-4 86634 
-1 16821 
-1 13384 

0.51367 
2.26306 
2.71574 
3.11495 
3 51501 
3.84124 
4 59185 
4.75553 
7 17102 
7.69683 
8.72038 
8.98466 
9 08775 
10 s 99886 
11 08385 
11 93986 
12.51986 

-0.57266 

12.73172 
13 10689 
13.43213 
13 -56639 
15.14766 
15.53997 
15.61135 
16 16405 
17.93626 
19.50155 
19.58522 

29.63628 
36.94086 
31.38364 
34.85817 
25.18820 
37.90152 
36 68937 
35.60518 
38.55354 
11.52424 
13.68789 
31 63069 
38 30381 
28.00029 
38.88549 
38.78894 
36.58082 
27 83403 
39.71495 
41.45189 
37.43329 
43 11202 
33.85169 
22.43807 
25 22098 
36.10997 
32.48451 

32 - 75606 
30 * 96552 
37.26091 
33 31354 

32.53878 

907.830 
1518.052 
1314.780 

392.320 
1406.962 
368.812 
486.552 
678.762 
767.720 
715.800 
630.020 
2202.210 
445.630 
1904.012 
2316.122 

1999 122 

2159.125 
429.510 
1853.680 
409.380 
1959.740 
53.260 
428.375 
815.550 
802.260 
481.653 
397.589 
404.400 
430.011 
304.768 

362.118 
4.417 

-13 77 
-16.49 
-13.84 
-13.58 
-17.16 
-15.37 
-13.37 
-11.68 
-16.49 
15.67 
13.32 
-8.32 
-9.15 
-0 .03  
-9.67 
-6.19 
-2.48 
0.99 
-8.09 
-9.44 
-1 I99 
-9.75 
-1.68 
6.67 
8.04 
2.27 
2.96 
2.57 
3.85 
8.27 
3.77 
7.46 

-12.62 
-20.35 
-13.68 
-17 16 
-17.52 
-19.55 
-17.38 
-15.76 
-18.57 
14.03 
9.94 

-11.17 
-11.45 
-7.30 
-9.53 
-8.94 
-6.37 
-2.47 
-7.14 
-9.04 
-2.02 
-10.89 
-0.55 
8.83 
6.08 
1.61 
2.92 
3.02 
3.85 
8.31 
3.46 
7.83 

-1.66 
-5.04 
2.53 
0.34 
-0.48 
-1.77 
2.59 
5.50 
-0.53 
23.33 
22.39 
12.16 
8.78 
19.58 
9.07 
9.54 
14.19 
22.76 
7.73 
1.86 
14.61 
-3.81 
19.57 
24.81 

18 83 
23.29 

25.91 

23.33 
23.71 
25 a 75 
15 84 
23.19 

-1.16 -12.11 
3.87 -11.45 
-0.17 -16.38 
3.57 -13.92 
0.35 -16.68 
4.18 -13.60 
4.01 -15.95 
4.08 -17.17 
2.09 -15.95 
1.64 -7 m 67 
3.38 -9.08 
2.85 -20.48 
2.30 -17.93 
7.28 -19.60 
-0.14 -18.74 
2.75 -15.73 
3.88 -16.67 
3.47 -21.77 
-0.95 -15.82 
-0.39 -11.30 
0.03 -16.61 
1.14 -5.95 
-1.13 -21.24 
-2.16 -18.14 
1.96 -17.87 
0.66 -16.55 
0.04 -20.33 
-0.45 -20.76 
0.00 -19.86 
-0.03 -17.47 
0.30 -12.07 
-0.36 -15.72 

0 . 0 3  
0.99 
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-1.13 
0.87 
-2.43 
0e35 
0.36 
1.15 
-2.15 
0.36 
0.93 
1.90 
-1.54 
2.40 
-3.02 
0.23 
3.26 
0.11 
-1.34 
0,14 
1.23 
2.73 

-0.18 
-2.67 
0.38 
1.31 
-0.55 
-1.05 
-0.64 
0.75 
1.36 
0.64 

parameters derived by Boucher and Altamimi (1985) 

(b)  We removed the high frequency contribution to these undulations 
using the OSU86F model [Rapp and Cruz, 1986bl from Nmin = 37 to 

N,,, = 360 

(c) We computed the undulations implied by GEMTl and ADJUST20 for 
the locations of these stations. 

The results from these computations are given on Table 14. The last 

column of this table shows the differences between No and the 



I 
I 
5 
8 
I 
I 
I 

10' ea. Block 
ON I 4s I 

139 

undulations implied by OSU86F (from Nmrn = 2 to Nmax = 360), as an 

indicator of the agreement of ND with undulations implied by a high 

degree geopotential model. 

- 
Ag (mgals) 

hE I SST IGE(MT-lIJUNE86 

A s  it can be seen from this table, the undulations implied by 

GEMTl are in good agreement with the Doppler derived undulations 

(the RMS of the differences No - N G E M T ~  is 2.6 m), while the 

undulations implied by ADJUST20 are  systematically biased with respect 

to the Doppler undulations (the RMS difference NI, - N A D J U S T ~ ~  is about 

16 m). 

-5' 
15' 

This comparison indicates that the problem in Africa is due to 

erroneous surface gravity values. This was  also verified by another 

comparison performed between 10' equal area mean gravity anomalies 

obtained from Satellite-to-Satellite Tracking (SST) techniques given by 

Kahn e t  a1 (1982) with the corresponding 10' equal area mean values 

computed f r o m  the June 1986 l'xl' anomalies by area averaging. The 

results of this comparison are given on Table 15. 

I 

-15' 10:8825 21:0375 10.9 8.2 -8.9 
5' 31:1925 41:3475 7.1 7.2 22.7 

Table 15. 10' Equal Area Gravity Anomaly Comparisons in Africa. 

I 
I 
I 
1 
I 
I 
I 

I Border of I 10' eza. Mean Anomaly I 

The 10' 8.8. anomalies implied by GEMTl (computed by area 

averaging of the 1 'xl' equi-angular implied anomalies) agree well with 

the SST derived anomalies, while the terrestrial anomalies show large 

differences. In both the cases of June 1986 a s  well a s  of GEMT1, the 

l*xl'  equi-angular blocks used to define the 10' equal area gravity 

anomaly were determined by rounding the 10' block longitude borders 
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to the nearest degree. 

The regional inconsistencies between the anomalies implied from 

satellite only geopotential models and the terrestrial measurements were 

identified also in previous investigations [Kahn et al, 19823, [Mainville 

and Rapp, 19851. Possible causes for these biases (in the cases where 
observed gravity data exist) are: 

(i) 
(ii) Systematic errors introduced in the collection or compilation of 

Systematic biases in gravity base stations 

the gravity data (gravity formula etc) 

(iii) Systematic biases of the vertical datums of these regions (see 

also Section 2.3.5). 

In the region of Afr ica ,  examination of the differences between the 

TUG86 and the TUG87 l * x l *  mean elevations has not shown any 

systematic differences in the region that could account for the anomaly 

differences detected. However, this is only to be interpreted as an 

indication since we have no information about the elevations used for 

the compilation of the l * x l *  mean anomalies in that region. 

On the other hand, in the areas of geophysically predicted 

anomalies, t he  biases m a y  be due to inappropriate modeling and 

estimation techniques used to estimate these values. 

Finally, i t  should be mentioned that the regional inconsistencies 

detected here have also been experienced in previous combination 

solutions. Figure 26 is very s imi l a r  (over continental regions) wi th  the 

Figure 11 given in [ k p p  and Cruz, 1986a, p. 461 which illustrates the 

locations of residuals exceeding 7 mgals in the OSU86D combined 

solution. 
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5.3.3 Downweighting of Selected Terrestrial Gravity Data  

Three alternative procedures can be used in order to compensate 

for the regional inconsistencies discussed in the previous section. 

(1) 
In areas where it is identified that the problem is caused due to 

vertical datum inconsistencies, introduce additional parameters in the 

modeling as it was discussed in Section 2.3.5. 

(2) 
In areas where redundant information is available (e.$. Doppler 

undulations), introduce additional observations in the adjustment, 

(3) 
Downweight the anomalies in regions where it is identified that the 

satellite information provides a more accurate description of the 

gravity field. 

Method (1) suffers the  disadvantage that the existing correlations in 

the normal matrix m a y  cause contamination of other parameters instead 

of resolving vertical datum biases. In any case the use of such a 

method requires thorough investigation that is beyond the scope of 

this study. 

Method (2) is limited by the fact that  redundant information is 

seldomly available. For example, no Doppler undulations are available 

in the regions of the Soviet Union or China where  large regional biases 

were detected. In addition, introduction of sparse point undulation 

data in a global adjustment has to be studied carefully. 

Parameterization of these observations should not include the very low 

degree harmonics since the sparse distribution of these data will 

degrade the estimability of long wavelength features of the gravity 

field. In  an experimental solution where a limited set of point Doppler 

undulations was used in Africa as  additional observations, a reduction 
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of the undulation differences (GEMT1 minus terrestrial solution), by 4 

m was obtained. However, in this solution only coefficients above 

degree 20 have been parameterized in the undulation observations and 

a very emall relative weight (0.01) was  used in the combination of the 

normal equations obtained f r o m  the undulations with the normals 

obtained f r o m  the anomalies. 

Such a eolution was made only for experimental purposes since we 
recognize that the use of heterogeneous data (both in t e r m s  of nature 

and in terms of distribution), is a problem that could not be addressed 

in the time frame of this work. 

Consequently, we have decided to attempt to compensate for the 

inconsistencies using method (3). The regions where the data would be 

downweighted were defined through the following comparisons: 

The locations of these blocks are shown in Figures 38 and 39 

respectively . 

180 200 220 210 260 280 300 320 310 0 20 10 

Figure 38. Locations of the 2550 1.~1. Blocks - - ~gl'xl'ADJUSTzoi a 10 mgalS* 

60 80 IO0 120 1'40 160 180 
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180 200 220 2'40 260 280 300 320 340 0 20 '40 GO 80 100 120 1110 lS@ . ? C  

Figure 39. Locations of the 1985 1 'xl Blocks Where I ig, E 2+3 - - A B I ~ ~ I * A D J U S T ~ O ~  10 mgals. 

The OSU86E/F implied 1.~1' anomalies used in the comparisons 

contained the part of the spectrum only up to N,,, = 36. 

Two files containing "flags" indicating these locations have been 

constructed (see also Section 5.2.1). The standard deviations of the 

anomalies in these locations were defined by 

(5.26) 

In the case corresponding to Figure 38, the area average standard 

deviation of the 46405 blocks which do not fulfill (5.24) (these standard 

deviations are assigned according to (5.11)), is 28.8 mgals .  The area 
average of the standard deviations of the 2550 blocks (assigned 

according to (5.26)) is 44.2 mgals. Hence, a downweighting of about 2.5 
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ADJUST20 
versus 

is performed for the areas where inconsistencies occur. 

ADJUST40 
versus 

Two solutions performed according to this weighting scheme are 

the ADJUST65 (including geophysical data) and ADJUST71 (excluding 

geophysical data) (see also Table 7). The comparison of these solutions 

to the  corresponding solutions ADJUSTZO and ADJUST40 gave the  
overall results shown on Table 16. 

RMS Undulation D i f f  (m) 0.60 3.67 
_RMS Anomaly Diff (mgals) 1.16 6.29 

As it is expected the downweighting affects more the solution 

where geophysical data are excluded because in that case the total 

number of available observations is substantially smaller than when 

geophysical data are included. 

In addition, the comparison of ADJUST65 against the GEMTl field in 

t e r m s  of global undulation and anomaly maps did not show substantial 

changes over the corresponding comparison of ADJUSTZO. This is due 

to the fact that the effect of downweighting cannot become apparent 

unless redundant information is introduced for the regions in question 

in the combination solution with the satellite normal equations. 

Table 16. Overall Comparison Between Terrestrial-Only Solutions 

Without and With Downweighting of Selected Anomaly Data 

IADJUST651ADJUST71 
Average X D i f f  I 8.67 I 10.49 

We recognize here that the procedure adopted to compensate for 

the regional inconsistencies between satellite-implied and terrestrial 

anomaly data, is not an optimum one. These problems should be 

considered in a more systematic manner in f i~t i~re  iq~Iat.en of gleba! 

anomaly data bases. 
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5.3.4 Computation of Anomaly Degree Variances 

Concluding this chapter an important issue related to the 

computation of anomaly degree variances from coefficients obtained 

from a least squares adjustment of an incomplete set of gravity 

anomaly data will be discussed. 

Figure 40. Anomaly Degree Variances Implied by GEMTl and ADJUSTZO. 
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Figure 41. Anomaly Degree Variances Implied by GEMTl and ADJUST40. 

The anomaly degree variances implied by a given potential coefficient 

set were computed according to 
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where 

GM 
7 = 3 *  
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(5.27) 

(5 .28 )  

The values of GM, a used were the ones given in (3.3), while the even 

degree zonal coefficients of the normal potential (J2, J4, J6) ,  used to 
define et,,, (see equation (3.10)), were the ones given in (3.13). 

Figure8 40 and 41 show the anomaly degree variances implied by 

the satellite only field GEMTl and the terrestrial only fields ADJUST20 

and ADJUST40. 

Examining Figure 40 we  observe that the solution ADJUST20 gives 

anomaly degree variances which are in good agreement wi th  those 

implied by GEMT1. Also, as it should be expected the terrestrial 

solution appears to have more power a t  higher degrees (above degree 

about ZO), than the satellite one. 

On the other hand, a first look of Figure 41 suggest6 that 

ADJUST40 yields coefficients totally unrealistic. However, the awkward 

shape of the spectrum implied by ADJUST40 ia due to the fact that in 

the computation of degree variances, the assumption is inherent that 

the potential coefficients are uncorrelated. In the case of ADJUST20 

the correlations between the coefficients which are neglected are small 

as it can be deduced from Figure 15a or 15c. However in case of 

ADJUST40 as  it can be deduced from Figures 15b or E d ,  the 

correlations between the coefficients cannot be omitted. 

Degree variances, in theory, cannot be defined for any set of 

coefficients estimated f r o m  gridded data (point or mean values) of 

finite gridsize, even if the data grid is complete, according to what 

was discussed in Sections 4.2.1 and 4.2.2. However as  it can be seen 

from the above the omission of the existing correlations between the 

coefficients effects the results severely only in cases where the 
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coverage is quite limited. 

Computation of "degree variances" can be done if we diagonalize 

the normal matrix associated with the coefficients. However, the base 

function6 that will be defined from the diagonalization will be linear 

combinations of surface harmonics not necessarily of the same degree. 

Hence, we would be able to compute the contribution to the anomaly 

from different coefficients but these coefficients will not necessarily be 
of the same degree. 



CHAPTER V I  

SUMMARY - CONCLUSIONS - RECOMMENDATIONS 

The estimation of harmonic coefficients of the geopotential from 

surface gravity data was  reexamined. The ultimate purpose w a s  to 

investigate optimum modeling procedures and estimation techniques, in 

order to incorporate the information implied by the most up to date 

terrestrial gravity data, in combination solutions currently developed a t  

NASA/Goddard Space Flight Center for use in the TOPEX/POSEIDON 

mission. 

The modeling adopted ie based on a form of the fundamental 

boundary condition of the linerarized Molodensky boundary value 

problem, which accounts for the effects of the earth’s ellipticity to the 

order of the eccentricity squared. 

The surface anomaly data were corrected for the effects of the 

atmosphere and the earth’s ellipticity. The ellipsoidal correction t e r m s  

were computed from an existing geopotential model, and applied to the 

surface anomaly data prior to the adjustment. In addition, examination 

of the procedures used for the numerical realization of the Molodensky 

surface free-air anomalies, lead to the conclusion that  the term 

corresponding to the second order vertical gradient of the normal 

gravity (6gh2) is neglected in the evaluation of the surface anomalies. 

This t e r m  causes long wavelength systematic errors in the undulations 

that have an RMS magnitude of about 22 cm, with maximum values 

reaching 1.80 m e t e r s .  
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Consequently, the additional correction ( 6 g h a )  was applied to the 

surface anomalies to compensate for this effect. 

The observation equations used to relate the unknown harmonic 

coefficients to the gravity data (properly reduced for the above 

systematic effects), consider the data lying on the physical surface of 

the earth. Hence, analytical continuation of the surface data to a 

bounding surface, is not required for the solution. 

The estimation of harmonic coefficients from the surface anomalies 

was peformed using a least squares minimum variance estimator as 

proposed by Rapp (1967). The full normal matrix was formed and 

inverted to obtain the least squares solution. The advantage of this 

technique is that it does not require a complete set of anomaly data, 

and that it does not involve any assumptions regarding the 

orthogonality of area-mean samples of surface spherical harmonics. 

Hence, in contrast to the quadrature formulas, it enables exact 

recovery of a set of harmonic coefficients from simulated (noiseless) 

anomaly data computed from these coefficients. 

An analytical comparison between the quadrature formulas and this  

technique, resulted in an alternative way which is proposed here for 

the definition and numerical evaluation of the quadrature formulas 

given in equation (4.46). Such a definition does not require the use of 

optimal quadrature weights. 

In the application of the least squares adjustment procedure, an 

alternative approach to compensate for aliasing effects was proposed 

and used. Namely, instead of predicting mean anomalies of gridsize 

that corresponds to the maximum degree and order of the coefficients 

being estimated (AX = ~ / N m a x ) j  we use the original 1.~1. anomaly data 

and remove from them the frequency content beyond N,,,. The high 

frequency content of the data is computed from an existing high 

degree geopotential model. 
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This procedure avoids the prediction of mean anomalies from the 

1 'xl ' data, which would introduce additional approximations, and 

provides a better control over the frequency content of the data. In 

addition, the use of more dense data in low degree expansions enables 

the distinction of isolated erroneous data values, which are 

characterized by large residuals. From this point of view, such low 

degree expansions can be used as efficient tools for data editing in the 

compilation of global anomaly fields. 

The comparison of low degree (N,,,,, = 36) global gravity models 

obtained in this study from terrestrial data alone, with the satellite 

derived models, has indicated extended geographical regions (USSR, 

China, Africa) where systematic inconsistencies between the two sources 

of information occur. In the case of Africa comparisons with Doppler 

derived undulations verified that the problem lies with the terrestrial 

data. In an attempt to restrict the influence of the data from such 

regions in the combined eolution, a downweighting of these anomalies 

w a s  performed. It is recognized that this procedure is not really an 

optimum one and in future compilations of global anomaly fields special 

emphasis should be given in the improvement of the gravity material 

for these areas. Also, the techniques used for the estimation of 

gravity anomalies through geophysical correlation should be reexamined 

so that more reliable gravity anomaly estimates can be obtained from 

the application of these procedures. 

The alternative use of gravity anomalies reduced to the ellipsoid 

through the application of terrain corrections was tested on a limited 

area. This procedure did not yield satisfactory results. Additional 

investigation is required in order to clarify the use of terrain 

corrections in the development of global geopotential models. 

The nature of the topic of this study has introduced u s  to a 

number of related problems for which detailed investigation could not 

be conducted, inside the limits of this  work. The estimation of error 

properties for global anomaly fields is certainly one of the problems 
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that  should be investigated in the future. The study by Weber and 

Wenzel (1982) can serve as  a starting point for such investigation. 

The implementation of heterogeneous data (gravity anomalies, sea 

surface heights etc) in global geopotential modeling is another topic 

that deserves additional investigation. The ability to incorporate 

different and repeat data in the least squares adjustment, makes this 
estimation procedure a natural selection for solutions to the 
altimetry-gravimetry boundary value problem in mixed domains. 

Solutions a s  the one performed by Wenzel (1985), should be further 

investigated in an attempt to avoid some of the approximations used 

(e.g. formation of diagonal normal ma t r ix ) .  

Finally, the usefulness of the modern computational resources in 

the investigations related to global gravity modeling should be 

emphasized. This study serves as a perfect example of an 

investigation that w a s  highly facilitated through the use of a 

supercomputer. Solutions which were carried out in a routine basis 

for this study were avoided 10 years ago due to their computational 

load. It is our sincere hope that these computational resources will 

make the t e r m  "computational limitations" to appear obsolete in a few 

years. 
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APPENDIX A 

SYSTEMATIC EFFECTS 

In this section the systematic effects arising from three causes are 

These are: examined in t e r m s  of numerical values and spatial behavior. 

(a) eh: represents the effect on the boundary condition of the linear 

(first order) t e r m  in the Taylor series expansion of J / Jh  

around its "sperhical" value a / J r ,  and thus has its origin in 

the Taylor series expansion of the geometrical properties of the 

ellipsoid around their spherical values. 

(b) zf  represents the effect on the boundary condition of the linear 
t e r m  of the Taylor series expansion of the normal gravity 7 

and its gradient Jy/Jh around their spherical values. Hence, it 

originates from the Taylor series expansion of the dynamical 

properties of the ellipsoid around their spherical values. 

(c) E ~ :  represents the effect on the area-mean gravity anomaly caused 
by neglecting the variation of the geocentric radius over the 

block (omission of the second term in equation (2.99)). 

The analytical expressions for the first two t e r m s  are 
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( A .  2) 

and the formulas for the computation of area-mean values IEh and 1% 

of these terms are given in (2.111) and (2.112). The corresponding 

formula for zy. is  derived next to the O(e2). We have (see equation 

(2.99)) 

( A .  3 )  r(4) = F f j  - 5 1 e2sin2b, + H q ) ( O  - i f )  + ... 
Fi j 

so that 

and 

(n+2) e2sin2b. N& + H i j ) ( +  - ii) + . . . I  
Fi j 

( A . 5 )  
or 

with obvious notation. 

However, we have 

- 
Ag(r,B,A) = (n-l)[a)n (cz,cosmh + Sn,sinmX)Pn,(cos6) 

r2 r m=o 

( A .  7)  
Setting 

I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
1 
1 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 

equation ( A . 7 )  can be written as 

or according to ( A . 6 )  

or 

so that 
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( A .  9) 

(A.  10) 

(A.  11) 

( A .  12) 

Ag = Ago + E , .  (A.  13) 

where Ago is the anomaly computed with the geocentric radius 

referring to the center of the block, and 

( A .  14) 
or 

OD n n  

n=2 ri j m=o 
E , .  = c (n-l)(n+Z)(*] Dnm(+ - bi)Pnm ( A .  15) 

For small blocksizes (e.g. l * x l * )  we may write 



(4  - + {  ) r a d  E sin(+ - = sin+cosqi - cos+sinii 

so that (A.15) becomes 

However, (see [Rapp, 1984, p. 26, equation 3.781) 

9 = 3 + msin24 + . .. 
or 

e* 4 3 + 2 sin2+ + ... 
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(A. 16) 

(A. 17) 

(A. 18) 

(A. 19) 

where 3 denotes the geocentric latitude (3 = 90' - 8) .  The last term in 

(A.19) will introduce terms of O ( e 4 )  when substituted in (A.17), hence it 

can be omitted. Accordingly (A.17) becomes 

n n  m 

n=2 
- c sin+{ C (n-l)(n+Z)[*] i j  m=O C Dnmsin&,, 

From the recursive relations [Moritz, 1980, equation 39-45] 

and [Ilk, 1983, equation 2.1.281 
.. 

(A.20) 

(A. 21) 

(A. 22) 
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where 

Ynm 

n+m+l)(n+m+Z) 
znm =J (Zn+l) (Zn+3) 

Wnm 
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(A .  23) 

( A .  24) 

( A .  25) 

Hence, 

I r m  

Evaluation of point values of zr can be made using (A.26), truncated to 

some finite degree N,,,, f rom a given set of potential coefficients, 

while for area-mean values (IEr), the above equation has to be modified 

in exactly the same manner as it was done in the case of and z7 

(see equations (2.111) and (2.112)). As in the case of E h  and z7, the 
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evaluation of .sr (or IE,) may be made on the surface of the reference 

ellipsoid rather than on the physical surface of the earth without 

significant loss of accuracy. 

For the numerical application , l o x l o  mean values of the  terms IEh, 

IE, and IE, have been computed from the  OSU86F potential coefficient 
set [Rapp and Cruz, 1986bl complete to N,,, = 180, using the TOPEX 

constants. 

A harmonic analysis was then performed to each one of the global 

sets containing the anomaly correction terms IEhj 1% and IE,. From 

the corresponding harmonic coefficient sets the implied undulation 

corrections were then computed. In Figures 42, 43 and 44 these 

undulation corrections are illustrated. These plots represent point 

values of the undulation on a 5'x5' grid, computed from harmonic 

coefficients complete to N,,, = 36. 
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Figure 42. Undulation Corrections Implied by IEh. (Contour Interval is 

5 cm). 
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Figure 43. Undulation Corrections Implied by IE7. (Contour Interval .-, 

5 cm). 
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Figure 44. Undulation Corrections Implied by IE.. (Contour Interval is 

5 mm). 
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With respect to these plots the following comments are to be made 

(a) The t e r m  E , ,  is proportional to the meridional component of the 

deflection of the vertical, since 

easinOcosOy# (A.27) 

as  it can be seen from (A.1). It is thus expected to take large 

values wherever the meridional slope of the geoid is large. An 

example of this behavior is the high observed in Figure 42 in the  

area of the Indian Ocean. 

(b) The term is proportional to the undulation a s  i t  can be seen 

from (A.2). This explains the similarity of Figure 43 with global 

plots of long wavelength geoids (compare, for example, with 

[Heiskanen and Moritz, 1967 , Figure 3-21]). 

Both Figures 42 and 43 are in perfect agreement wi th  the 

corresponding Figures 1 and 2 in [Cruz, 1986, pp. 15, 161 verifying the 

equivalence of the two methods for the computation of the ellipsoidal 

effects. 

(c) Figure 44 indicates that the undulation corrections implied by z r  

are almost exclusively a function of latitude, which is of course 

expected. It also indicates that the effect of E~ can be safely 

neglected since the maximum undulation correction implied by this 

term is (in absolute value) about 3 cm. 
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APPENDIX B 

COMBINATION SOLUTION ADJUSTMENT MODELS 

Notation 

Xa: t h e o r e t i c a l  values of parameters 

La : t h e o r e t i c a l  values of observables 

Lb: observed values of observables 

2": adjusted values of observables 

XO : approximate values of parameters 

Xa: adjusted values of parameters 

v : r e s idua l s  

" 

I L,: a set of observed parameters 

X : a l t e r a t i o n  vector  (solut ion of normal equations) 
A 

"a x = x o + ^ x  

2" = L b  + v 

I dent i f  y : 

L,: p o t e n t i a l  coeff ic ients  obtained from satellite so lu t ion  (B.4) 
P,: weight matrix associated with L, 
LT: area-mean gravi ty  anomaly estimates, d g j j ,  properly 

cor rec ted  f o r  systematic e r r o r s  

( B . 5 )  

( B .  6 )  

( B .  7)  

b 

b Pe: weight matrix associated with LT 
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b Assume: L, and LT uncorrelated 

Set: XO = L, 

Case I: Terrestrial estimates of potential coefficients obtained f r o m  

quadrature formulas 

Mat hematical Model: 

( B .  10) 

or 

xa = G ( L ~ )  (B. 11) 

Combination solution can be viewed as the sequential adjustment 

xa = G ( L ~ )  

L, = xa 
(B. 12) 

which reduces to the case of "observations in two groups with the 

same unknown parameters" [Uotila, 1986, Section 81, as long as we 
identify 

F , ( L ; , x ~ )  = o <=> xa - G(L=) = o 
F,(L;,x~) = o <=> L, - xa = o 

b b  with L: = LT; Lz = L, 

Then, 

(B. 13) 

( B .  14) 
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wl = F~ (L;,X') = L, - G(L!) := w 

w, = F,(L;,X') = L, - L, = o 

Accordingly, 

Hence, 

so that 
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(B. 16) 

(B. 17) 

(B. 18) 

(B. 19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 
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Thus 

-' T -1 T -1 (AiMi Wi + AzMz Wz) T -1 n 
X = -(AIM1 Al + AXMzlAa) 

yields 

^x = -[ (BIP~'BJ)-~ + P,]-' (BgPa1BJ)-lW 

Also 

-1 T v = P  B K  

where K are the Lagrange multipliers. Hence 

NOW 

yields 

From (B.26) and (B.27) we have 

-1 n -1 T -1 T 
VJ = -Pg Bg(BgPg Bg) (X + W) 

A 

v, = x 

Equation (B.29) in view of (B.24) yields 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 
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(B.30) 

Equation (B.30) is identical with equation (74) in [Rapp, 19841, while 

(B.28) is identical to [ibid, eq. 691 since B, = I in Rapp's notation. 

Case 11: Terrestrial estimates of potential coefficients obtained from 
least squares ad juatment. 

M a t  hematical Model 

(B.31) 

The combination solution can be viewed as the sequential adjustment 

La = F(Xa) 
L, = xa 

(B.32) 

which again falls into the same category as before [Uotila, 1986, Section 

81 as long as we identify 

F,(L:,x~) = o <=> L~ - F(x=) = o 
F,(L;,X') = o <=> L, - xa = o 

Following the  same procedure as i n  Case I w e  now have 

(B.33) 

(B.34) 

(B.35) 

(B. 36) 

(B.37) 
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(B.38) 

wz = 0 (B.39) 

Hence, 

(B.40) 

and thus following exactly the s a m e  steps as in Case I we  finally get 

A -1 
vx = x = - (A;P~A, + P,) A ~ P ~ W  (B.41) 

and 

(B.42) 
h 

vg = - ( A x X  + w) 

Equations (B.41) and (B.42) become identical to equations (1  17) and 
(120) respectively of [Rapp, 1986, p. 3881 once the proper changes of 

the notation are made2 
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